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Chapter 1

Introduction

“The Blue Planet” is how we describe our beloved homeland planet — Earth.
When we see its pictures taken from the satellites, the planet is wrapped by a
beautiful blue color under the sunshine with a black background of the dark
universe. The blue color comes from the oceans which cover 71% of the surface
of Earth and all the oceans contain 97.1% of the total amount of the water on
Earth in a liquid form. The rest part (less than 3%) is found in groundwater,
glaciers or ice caps and other large water bodies like lakes and rivers. Water
circulation is one of the most important circulations on Earth besides the
carbon circulation. Water evaporates from the sea and forms clouds in the
sky. Some of those clouds stay still and some others are carried to the lands by
the wind and later turn into rainfalls. Rain drops accumulate and join rivers
or groundwater and finally return back to the sea. During this circulation, the
flowing rivers cut the ground and valleys form. Meanwhile, the mud and sand
from the erosion of river banks are carried by the river to the lower course
and plains form. In this way the landscape of Earth was reshaped gradually
in the past billions of years. This circulation also causes the weather changes.
Having clouds, rains, snows and fogs totally depends on the amount of water
in the air and sky. Moreover, the abundance of water strongly affects the
climate of certain areas. For instance, rain forests around the amazon river
have plenty of rain while the Sahara deserts have almost zero precipitation.

The other contribution of the water to Earth, even more important than
that to the geographic evolution, is that it brings life to Earth. Even though
there are many models of abiogenesis, the earliest life is discovered in the
oceans without any doubts. From bacteria, later algae to marine plants and
fishes, the forms of lives evolve their sizes and complexity during the billions
of years. On the land, insects, plants and animals started to appear a little
bit later than in the oceans. They no longer live in an aquatic environment
but they need acquiring water for sustaining their lives since a very large
portion of the body weights consists of water. For instance, the human body
contains from 55% to 78% water. If one stops drinking water for a week,
he will die soon because of organ failures due to the dehydration. Many
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biological processes happen with the participation of water. As one of the
most important processes in cyanobacteria and plants, the photosynthesis

2nCO2 + 2nH2O→ 2nCH2O + 2nO2

which generates the oxygen in the atmosphere needs water as one of the raw
materials. In another case, when leaves fall off the trees and get dry, their color
turns from green into yellow. According to our current knowledge about those
lives we are familiar with, the existence of liquid water is a key prerequisite for
any kind of lives. Therefore, whenever we send robot rovers to other planets,
looking for the signs of water is always a very important subject in order to
discover alien lives. When the Cassini-Huygens arrived Enceladus, a satellite
of Saturn, we were so encouraged by this piece of inspiring news that water
vapor was discovered there. Since water plays such an important role in lives
on Earth, it deserves a very deep understanding.

Our journey on understanding water started very early. In 1783, Cavendish
published a paper on the production of water [1] by burning inflammable air
(hydrogen) in dephlogisticated air (oxygen). Later physicists found that atoms
could be divided into electrons and nuclei. As the positive charges of nuclei
increase, all the elements can be sorted in the periodic table. We know that
oxygen is the richest element on Earth and hydrogen is the lightest element
and also the first element appeared at the original stage of the Universe ac-
cording to the Big Bang theory. Not only in chemistry but also in physics,
water has left so many footprints because of its easy accessibility. In the
early days, the SI unit kilogram was chosen to be as heavy as 1 dm3 of wa-
ter. In the Celsius measurement of temperature, zero and a hundred Celsius
are the frozen and boiling points of water at the atmosphere. Besides, the
lifting power, buoyancy, of liquids was first explained by Archimedes with an
experiment in a bathtub filled with water.

All our knowledge about water in physics and chemistry came from exper-
iments till 1925 when quantum mechanics was developed to describe how the
quantum states of a physical system evolve with time. It laid the foundation of
studying materials by a theoretical method. By solving the Schrödinger equa-
tion [2], in principle, all the electronic properties of materials can be studied
theoretically. However, in practice, solving such many body problem is very
difficult. Thanks to fast evolving computers, it becomes possible to simulate
the liquid water theoretically and compare the results with experiments.

It’s been almost seven decades since the first general purpose electronic
computer ENIAC was born in 1946. Ten years later, the history of super-
computer started with the Atlas at the University of Manchester and sev-
eral computers designed by Seymour Cray to exploit innovative parallelism
to achieve superior peak performance. The period of 1970s and 1980s was
the Cray era when Cray-1/2 supercomputer achieved gigaflops performance.
The main boost of supercomputer came in the early 1990s with the emerging
computer clusters which consist of computers connected by network. Before
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Figure 1.1: A snapshot of the simulation of liquid water.

that, supercomputer had excluded clusters and relied on shared memory and
vector processors with internal parallelism but the cost of those components
are extremely expensive. Instead, computer cluster has distributed memory
and its computing power can be dramatically increased by means of integrat-
ing more computers which are much less expensive. Nowadays on the TOP500
organization’s semiannual list of the 500 fastest supercomputers, almost all
the supercomputers including all the top 10 have cluster architecture. The
peak performance has reached ∼ 34 petaflops by Tianhe-2 in China which
deploys 32,000 processors with 48,000 accelerators. In two or three years, new
exaflops supercomputer will appear.

When equipped with supercomputer, we have several methods with various
accuracy for study materials at different scales. Usually, the more accurate
the method is, the more its computation costs. In figure 1.2, the system size
of a typical simulation now and the qualitative accuracy of the method used
by this simulation show a negative correlation if the computing power is fixed.
Simulations of systems with millions of atoms can be easily performed by em-
pirical force field methods but are not affordable for other ab initio approaches.
The former ones have been largely applied to study interesting properties in
physics, chemistry and biology, including the thermal conductivity of materi-
als, viscoelasticity of polymers and the folding process of proteins. However,
such classical simulations treat atoms as effective potentials without any ex-
plicit quantum description of electrons and nuclei and thus is inadequate to
describe the electronic properties of real systems. Density functional theory
(DFT), one of the most popular ab initio methods, usually gives more accu-
rate results compared with empirical force fields and is capable of studying the
electronic structure of a material but it’s limited by the quality of the density
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Figure 1.2: Accuracy and system size capability of various simulation meth-
ods.

functional. By further climbing up to the next steps, quantum Monte Carlo
(QMC) methods which provide better accuracy because of less approximation
compared with DFT while the most accurate and expensive methods are the
configuration interaction (CI) and coupled cluster (CC) often called as post-
Hartree-Fock (post-HF) methods. Usually a plain wave DFT algorithm, QMC
and post-HF methods have typical scaling as n3, n3∼4 and n5∼ respectively.

As the computing power increases, we can choose to simulate systems of
larger sizes with tools we already have or start refining our old knowledge by
studying the same system with approaches at a higher level of accuracy. This
thesis takes the later course and we have simulated the liquid water for the
first time with a molecular dynamics approach driven by the forces evaluated
by quantum Monte Carlo.

Before starting the simulation, we have solved the following issues

a) Determine a good wavefunction ansatz, which provides a perfect balance
between accuracy and computational cost.

b) Devise efficient optimization methods, since we need to optimize at least
ten thousand parameters and the optimization is intensively employed
in order to fulfill the Born-Oppenheimer approximation when ions are
moving during the molecular dynamics.

c) Develop a robust molecular dynamics scheme even if the forces are eval-
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uated in presence of statistical errors.

The chapter 2, we deal with the challenge b). It focuses on the variational
Monte Carlo (VMC) and the wavefunction optimization methods based on
VMC. The performance of different methods are displayed through the op-
timization of the Jastrow factor in our test case Beryllium dimer and the
efficiency is improving surprisingly during the evolution of these methods.

In chapter 3, we focus on the challenge a). It describes the wavefunc-
tion ansatz used by our simulation. In this thesis, we introduce the atomic
hybrid orbitals which significantly increase the compactness of our wavefunc-
tion without hurting accuracy. This chapter also explain how to optimize
the determinant in a way that the number of variational parameters scales
only linearly with the system size. This further helps the efficiency of the
wavefunction optimization.

In chapters 4 and 5, the issue c) is explained in detail. In chapter 4,
a second order Langevin dynamics (SLD) scheme is devised particularly for
QMC and this thesis improves this scheme by developing a better integration
method. Here, we also highlight the remarkable power of the force covari-
ance matrix which can be defined only in QMC and is capable of accelerating
the slow modes of a dynamics. In chapter 5, this SLD for QMC is validated
through intensive benchmarking on the calculation of the vibrational frequen-
cies of water and other small molecules. It is shown that many systematic
biases in our MD scheme and QMC evaluation can be controlled so that we
are confident to push forward this ab initio molecular dynamics for applica-
tions on large systems.

Finally in chapter 6, we perform the simulation of liquid water with all the
preparation done in the previous chapters. The results are encouraging since
we’ve closed the discrepancy of the peak positions of RDFs between experi-
ments and ab initio simulations. The power of QMC is also demonstrated by
the fact that the shapes of our RDFs are much less structured than previous
DFT-based ab initio simulations even if the two water molecule interaction is
dealt with the same level of accuracy as the DFT/BLYP calculation. In this
chapter, we have also studied the features of hydrogen bonds in our simulation
of liquid water. All our results indicate that it is important to consider the
quantum nature of the ions for a faithful description of liquid water. This will
be left for future studies, possible in principle even within the QMC approach.
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Chapter 2

Quantum Monte Carlo

2.1 Introduction

The nature of atoms, molecules, clusters, solids and liquids in condensed mat-
ter physics is determined by the fundamental particles, electrons and nuclei
whose understanding is based upon theoretical methods of quantum mechan-
ics and statistical mechanics. The Hamiltonian of such a system consisting of
M ions and N electrons can be expressed in the following form by neglecting
the relativistic effect

Ĥ =−
M∑
a=1

~2

2Ma

∇2
Ra +

1

2

M∑
a6=b

ZaZbe
2

|Ra −Rb|

−
N∑
i=1

~2

2me

∇2
ri
−

M∑
a=1

N∑
i=1

Zae
2

|Ra − ri|
+

1

2

N∑
i 6=j

e2

|ri − rj|
(2.1)

= T̂N + V̂NN + T̂e + V̂Ne + V̂ee (2.2)

where Ra, Za and Ma are the coordinates, proton number and mass of the
ion a while ri and me are the coordinates of the electron i and the electron
mass. e is the one electron charge. In the first line of eq. (2.1), the two
terms are the ionic kinetic energy operator T̂N and potential operator V̂NN
of all ion-ion pairs. In the second line of eq. (2.1), the three terms are the
electronic kinetic energy operator T̂e and potential operators V̂Ne and V̂ee of all
electron-ion and electron-electron pairs. With this Hamiltonian, all properties
of the system can be obtained in principle by solving the time-independent
Schrödinger equation

ĤΨfull(R, r) = EΨfull(R, r) . (2.3)

However, solving this equation in the full quantum mechanic framework, in
practice, is very difficult since there are too many degrees of freedom. A practi-
cal way to overcome this difficulty is to invoke the so called Born-Oppenheimer
approximation by recognizing the big difference in the time scales between
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nuclear and electronic motion. The full wavefunction in eq. (2.3) can be fac-
torized into the product of a nuclear part χ(R) and an electronic part Ψ(r;R)
which depends parametrically on the nuclear positions R

Ψfull(R, r) = χ(R)Ψ(r;R) . (2.4)

Since the nuclei are much heavier than the electrons by at least three orders
of magnitude, electrons can follow immediately the motion of the ions. The
nuclear kinetic term could be approximated as

T̂NΨfull(R, r) ≈ Ψ(r;R)T̂Nχ(R) . (2.5)

Thus, eq. (2.3) can be disentangled into two coupled equations

(T̂e + V̂Ne + V̂ee)Ψ(r;R) = EeΨ(r;R) (2.6)

(T̂N + V̂NN + Ee(R))χ(R) = Eχ(R) . (2.7)

The first equation is the eigenvalue equation for the electronic Hamiltonian
Ĥe = T̂e+ V̂Ne+ V̂ee which yields a set of eigenfunctions Ψ(r;R) and eigenval-
ues Ee depending parametrically on R. Together with the repulsive Coulomb
interaction between the nuclei it provides an effective potential in which the
nuclei move

V n = En
e (R) + VNN(R) (2.8)

The effective potential V 0(R) associated with the electronic ground state is
called the Born-Oppenheimer surface or potential energy surface (PES). On
the PES, the nuclear eigenvalue problem can be solved, which yields a set of
rotational and vibrational levels in the nuclear motion.

Since there is no known analytic solution to the many body system de-
scribed by Ĥe, a numerical solution is then needed. The first attempt was
done by Fock [3] in 1930 with the so called Hartree-Fock method. If there’s
no spin-orbit interaction, the determinant wavefunction ΨSD can be written
as a Slater determinant

ΦSD =
1

(N !)1/2

∣∣∣∣∣∣∣∣
φ1(r1, σ1) φ1(r2, σ2) φ1(r3, σ3) · · ·
φ2(r1, σ1) φ2(r2, σ2) φ2(r3, σ3) · · ·
φ3(r1, σ1) φ3(r2, σ2) φ3(r3, σ3) · · ·
· · · · · · · · · · · ·

∣∣∣∣∣∣∣∣ , (2.9)

where φi are single particle “spin orbitals”. The Hartree-Fock approach turns
therefore to a minimization of the functional

EHF = min
〈ΦSD|Ĥ|ΦSD〉
〈ΦSD|ΦSD〉

(2.10)

with an iterative algorithm. Since the Slater determinant takes into account
all the particle exchange, the difference between exact non-relativistic ground
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state energy Eexact and Hartree-Fock EHF in the limit of a complete basis set is
the residual energy — the so-called electron correlation energy a term coined
by Löwdin [4]

Ecorr = Eexact − EHF . (2.11)

In QMC calculations, the correlation energy is recovered by correlating the
Slater determinant with a Jastrow factor discussed in chapter 3.

The term “Quantum Monte Carlo (QMC)” stands for a number of stochas-
tic algorithms which solve quantum many-body problems on various systems
ranging from model Hamiltonian to molecules and solids [5, 6]. The most
distinctive and common feature of these algorithms is to solve Schrödinger
equation and evaluate its properties in a stochastic way.

The first QMC, variational Monte Carlo (VMC) [7], was introduced half
a century ago when the history of computer was only two decades old. In the
following decades, more sophisticated and costly projection methods emerged
such as Green function Monte Carlo (GFMC) [8], diffusion Monte Carlo
(DMC) [9], reptation Monte Carlo (RMC) [10] and lattice regularized dif-
fusion Monte Carlo (LRDMC) [11, 12]. Apart from these methods suitable
for properties at zero temperature, path integral Monte Carlo (PIMC) [6] was
developed for calculating thermodynamic properties. Unlike all those QMC
variants mentioned above, which sample the wavefunction in the configura-
tion space, full configuration interaction quantum Monte Carlo (FCIQMC)
[13] and auxiliary-field quantum Monte Carlo (AFQMC) [14, 15] do the sam-
pling in the determinant space.

In the last decade, QMC methods have been rapidly gaining interest among
physics, chemistry and even biology for electronic structure calculations be-
cause of their favorable scaling with the system size, accuracy comparable to
high level quantum chemistry methods and readiness for the implementation
on modern parallel computers. The computational cost of QMC algorithms
scales as N3

el ∼ N4
el with the number Nel of electrons while post-Hartree-Fock

quantum chemistry methods like configuration interaction (CI) [16] and cou-
ple cluster (CC) [17] scale at least as N5

el. Within the same accuracy, QMC is
capable of studying much larger systems far beyond only small compounds.
Obviously QMC methods are computationally more demanding than mean
field ones, such as density functional theory (DFT) and Hartree-Fock (HF),
but the accuracy of QMC, comparable with post-HF methods, is much better
than them since it’s devised as a many-body technique. We’ve seen much
QMC success in solving problems where the mean field approximation fails.
Nowadays parallel supercomputers increase their computational power mainly
by integrating more compute units and executing calculations on them simul-
taneously. QMC algorithms are the ideal applications for these machines
because they can be very easily implemented in parallel thanks to its way of
generating samples.

This chapter is organized as follows. Section 2.2 introduces the variational
Monte Carlo method. Section 2.3 describes the Metropolis algorithm and
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shows how VMC is implemented. Then the scheme of wavefunction optimiza-
tion is presented in section 2.4.

2.2 Variational Monte Carlo

Variational Monte Carlo (VMC) is the cheapest and first developed QMC al-
gorithm. In 1964, W.L. McMillan [7] introduced it from classical liquid theory
to calculate the ground state of liquid 4He. A decade later, D. Ceperley et al.
[18] generalized it to fermions. VMC is based on the ‘Variational principle’.
With a given trial wavefunction ΨT, the expectation value of the Hamilto-
nian is the variational energy EV which provides an upper bound to the exact
ground state energy Egs

EV =
〈ΨT|Ĥ|ΨT〉
〈ΨT|ΨT〉

≥ Egs . (2.12)

A meaningful ΨT should have the proper symmetry and must be normalizable.
If the configuration space |x〉 is chosen as the basis set where x denotes a

many-electron configuration where all the positions of the electrons and their
spins are known, then by inserting the basis set completeness

∫
x

dx |x〉〈x| = 1,
eq. (2.12) can be recast as

EV =

∫
x

dx 〈ΨT|x〉〈x|Ĥ|ΨT〉∫
x

dx 〈ΨT|x〉〈x|ΨT〉
=

∫
x

dx eL(x)ψ2
T(x)∫

x
dx ψ2

T(x)
, (2.13)

where ψT(x) = 〈x|ΨT〉 and eL(x) is the so-called local energy

eL(x) =
〈x|Ĥ|ΨT〉
〈x|ΨT〉

=
ĤψT(x)

ψT(x)
. (2.14)

dx is a shorthand notation for the 3N -dimensional integral over all the electron
coordinates. The 3N -dimensional integral of eq. (2.13) can be evaluated with
Monte Carlo integration. We rewrite it as

EV =

∫
dx π(x)eL(x) = 〈eL〉, π(x) =

ψ2
T(x)∫

x
dx ψ2

T(x)
, (2.15)

where π(x) is a probability density. As we will show in the next section, a
stochastic process (Markov chain {xn}) is capable of generating configurations
according to the desired probability π(x). Then the expectation value of the
energy is the mean of eL(x) during the process

EV =
1

NMC

NMC∑
n

eL(xn) . (2.16)
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Suppose all the samples {x} are independent, according to the central limit
theorem (CLT), the average value ȳ of a random variable y approaches Gaus-
sian distribution when the number NMC of samples goes to infinity. Its stan-
dard deviation σ(ȳ) (also called error bar) falls off like σ(y)√

NMC
as NMC increases.

In our case,

σ(EV) =
σ(eL)√
NMC

. (2.17)

Thus the statistical uncertainty in the estimation of the variational energy
can be suppressed to arbitrarily small values as long as NMC is large enough.
Therefore, the Monte Carlo integration can be pushed to any desirable accu-
racy in principle.

Suppose that ΨT coincides with an eigenstate Ψeg of Ĥ, namely Ĥ|Ψeg〉 =
Eeg|Ψeg〉 where Eeg is the corresponding energy eigenvalue, the local energy

eL(x) =
Ĥψeg(x)

ψeg(x)
= Eeg (2.18)

keeps constant regardless of configuration |x〉, which clearly implies that its
variance is exactly zero and its average value is Eeg. It should be noted that

this zero variance property holds for all eigenstates of Ĥ, not necessarily the
ground state. It provides a rigorous criterion for examining how far ΨT is
from Ψeg. Let us see the quantum average of the Hamiltonian squared on a
variational state ΨT

〈Ĥ2〉 =
〈ΨT|Ĥ2|ΨT〉
〈ΨT|ΨT〉

=

∫
x

dx 〈ΨT|x|Ĥ〉〈x|Ĥ|ΨT〉∫
x

dx 〈ΨT|x〉〈x|ΨT〉

=

∫
x

dx e2
L(x)ψ2

T(x)∫
x

dx ψ2
T(x)

=

∫
dx π(x)e2

L(x) = 〈e2
L〉 (2.19)

which is exactly equal to the average of local energy squared. Thus, the
quantum variance of the Hamiltonian

σ2(Ĥ) = 〈(Ĥ − EV)2〉 = 〈Ĥ2〉 − E2
V

= 〈e2
L〉 − 〈eL〉2 = σ2(eL) (2.20)

is indeed exactly equal to the variance of the local energy. This relation further
fortifies our criterion that the smaller the variance, the closer the variational
state is to the exact eigenstate.

This variational Monte Carlo method is very general and can be extended
not only to discretized systems by replacing all multi-dimensional integrals
with summations, but also to general Hermitian operators Ô (e.g. Ŝ2) by
replacing eL(x) with the corresponding local estimator OL(x) defined as

OL(x) =
〈x|Ô|ΨT〉
〈x|ΨT〉

(2.21)
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2.3 Metropolis algorithm

To compute the integral (2.15) with a Monte Carlo integration, we need to
generate a Markov chain with the given probability distribution π(x). The
master equation for the iteration n is

ρn+1(xn+1) =

∫
dx T (xn+1|xn)ρn(xn) (2.22)

where T (xn+1|xn) is a conditional probability which describes the transition
probability from xn → xn+1. In order to have a stationary distribution π(x),
it should follow that

ρn+1(x) = ρn(x)→ π(x) for large n. (2.23)

For this purpose, it is sufficient to satisfy the detailed balance condition

T (xn+1|xn)π(xn) = T (xn|xn+1)π(xn+1) . (2.24)

If a Markov chain satisfies detailed balance and is ergodic, then the equilibrium
distribution π(x) will be always reached, for large enough n, independently of
the initial distribution.

In practice, the implementation of generating such Markov chain was first
introduced by Metropolis et al. [19]. In their scheme, the transition probability
T (xn+1|xn) can be chosen with great freedom. To ensure the detail balance,
the new configuration xn+1 generated from xn with a transition probability
T (xn+1|xn) is only accepted with a probability

A(xn+1|xn) = min

{
1,
π(xn+1)T (xn|xn+1)

π(xn)T (xn+1|xn)

}
. (2.25)

With this scheme, after large enough iterations, the equilibrium distribution
π(x) is reached.

The typical flow chart of variational Monte Carlo is described as algo-
rithm 1.

It should be emphasized that this algorithm only cares about the ratios
of 1) probability distribution and 2) transitional probability between the pro-
posed and current configurations. For the first ratio, e.g. VMC, we can simply
calculate the ratio as ψ2

T(x′n+1)/ψ2
T(xn) without computing the normalization.

For the second ratio, we can choose scheme like smart Monte Carlo [20] to
have asymmetric transition probability or choose simple schemes to obtain
symmetric transition probability T (xn+1|xn) = T (xn|xn+1) such that the ra-
tio is constantly 1.

In our implementation of the generation of new electronic configurations,
we move electrons one by one and determine if the proposed move should be
accepted or rejected. Updating the wavefunction and computing the accep-
tance ratio after proposing a single electron move is implemented in a very

15



Initial setup;
for iteration i less than required statistics do

Propose a move from xi → x′ with probability T (x′|xi);
Evaluate the new probability π(x′) and A(x′|xi);
Generate a random number ξ ∈ [0, 1);
if ξ < A(x′|xn) then

accept: xi+1 = x′ ;
else

reject: xi+1 = xi ;
end
Calculate the local energy eL(xi+1);

end
Compute variational energy EV as (2.16);

Algorithm 1: Variational Monte Carlo.

efficient way. Instead, if we propose a global move and it is finally rejected, a
lot of computation is wasted. For this reason, we have a more efficient sam-
pling by moving electrons individually. In our scheme, the proposed move
of an electron is determined inversely proportional to its distance from the
nearest ion. If the electron is close to an ion, it moves with a small step but
if it is far away from ions, it correspondingly moves in a large step. Since
the moves are asymmetric, the ratio of the transition probability is adjusted
accordingly.

2.4 Wavefunction optimization

QMC calculations depend not only on the quality of the wavefunction ansatz,
which will be discussed in the following chapter 3, but also on how well the
wavefunction is optimized, in order to be as close as possible to the exact
ground state.

Optimization is a very popular topic in numerical algorithms. All opti-
mization methods are divided into global optimization and local optimization
ones. Methods like simulated annealing, evolutionary algorithms and swarm
algorithms are global optimization methods which stochastically explore a
very wide range of the landscape. Finding the extrema with these methods is
guaranteed only after an infinite number of steps. Usually such optimization
methods are applied on NP-hard problems which have non-polynomial scaling
with systems size. On the other hand, the local optimization methods focus
on searching the local extrema in a deterministic way. They are capable of
reaching the extrema within a given time. Commonly used local optimization
method are steepest decent, quasi-Newton and conjugate gradient methods.
Here we only focus on optimizing the wavefunction with local optimization

16



methods adapted to QMC.
In QMC, local optimization methods become more difficult since the sta-

tistical noise is present in the estimation of the cost function (variance, energy
or their linear combination) and its first and second derivatives. There are two
types of wavefunction optimization widely used in QMC — the variance and
the energy minimization. The former was introduced by C. Umrigar [21] in
1988. This method minimizes the variance of the local energy by varying the
wavefunction parameters with fixed Monte Carlo samples. According to zero
variance principle, the wavefunction closer to the ground state has a smaller
variance. In principle, variance minimization can reach the ground state but,
in practice, since the variance can hardly approaches zero due to the limitation
of the wavefunction ansatz, we can never check if the optimized wavefunction
is the closest possible one to the ground state or just a local minimum in the
hyper surface of the variance. Indeed, different authors [22, 23] found that
variance minimization failed to give the best possible wavefunction but energy
minimization could. In this thesis, we use only energy minimization methods
which bring the possibility of structural optimizations and also molecular dy-
namics. Our target is to devise a scheme that is robust and converging with
a minimal number of iterations in the presence of QMC noise. In the follow-
ing subsections, we will introduce the stochastic reconfiguration (SR) method
and SR with Hessian accelerator, conjugate gradient and sign/noise filter. On
our test case Be2 (the physics of this molecule is discussed in the last part of
section 3.5), their performances (see figure 2.1) are well displayed and their
features are discussed.

2.4.1 Stochastic reconfiguration method

Stochastic reconfiguration (SR) was introduced as an optimization method for
a generic trial wavefunction in [24, 25]. This technique takes advantage of the
knowledge of the wavefunction and allows a much more efficient optimization
compared with other conventional methods like steepest decent and Newton
methods.

The SR method is derived as follows. In projection methods, as long as
the trial wavefunction is not orthogonal to the ground state wavefunction,1 we
can obtain a new state closer to the ground state by applying the projection
operator (Λ− Ĥ) to the current trial wavefunction for Λ large enough. If we
could evolve the wavefunction as closer as possible to the new wavefunction
after the projection, energy minimization could be achieved. For this purpose,

1In practice, this is always true because the machine precision will deteriorate the or-
thogonality after several iterations.
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Figure 2.1: The performance test of the optimization of the Jastrow factor
with the stochastic reconfiguration method and its variants. The test case
is Be2 and the initial wavefunction is a Slater determinant with the Jastrow
factor equal to 1. We choose 0.1 as the trial step in SR and, for stability
reasons, we reduce the trial step automatically generated by SRH, SRH-CG
and SRH-SNF by a factor of 0.7. In the SRH-CG-n, we use n directions while
in the SRH-SNF, we use 40 significant parameters among a total of 94 ones.

we define

|ΨP
T〉 = (Λ− Ĥ)|Ψ(α1,...,αp)

T 〉 (2.26)

|Ψ′(α
′
1,...,α

′
p)

T 〉 = |Ψ(α1,...,αp)
T 〉+

p∑
i=1

δαi
∂

∂αi
|Ψ(α1,...,αp)

T 〉 (2.27)

where ΨP
T is the new wavefunction after projection and Ψ′T is the optimized

wavefunction and αi(i = 1, . . . , p) are the parameters of the wavefunction.
Eq. (2.27) can be rewritten as

|Ψ′(α
′
1,...,α

′
p)

T 〉 =

p∑
i=0

δαiÔ
i|Ψ(α1,...,αp)

T 〉 (2.28)

where

Oi(x) =
∂

∂αi
ln Ψ

(α1,...,αp)
T (x) (i > 0) and O0 ≡ 1, δα0 = 1 . (2.29)

18



In order to make |Ψ′T〉 as closer as possible to |ΨP
T〉 in the subspace spanned

by Ôi|ΨT〉, we impose the following SR constraints

〈ΨT|Ôk|Ψ′T〉 = 〈ΨT|Ôk|ΨP
T〉 for k = 0, . . . , p (2.30)

which are equivalent to the following equations

δα0 +

p∑
i=1

〈Ôi〉 = Λ− 〈Ĥ〉 (2.31)

δα0〈Ôk〉+

p∑
i=1

〈ÔkÔi〉 = Λ〈Ôk〉 − 〈ÔkĤ〉 for k = 1, . . . , p . (2.32)

Since δα0 is only a normalization of the wavefunction, by replacing δα0 in
eqs. (2.32) from eq. (2.31), we obtain a set of linear equations

p∑
i=1

δαiSi,k =
1

2
fk (2.33)

where Si,k = 〈(Ôi − 〈Ôi〉)(Ôk − 〈Ôk〉)〉, a covariance matrix, and fk =

2(〈Ôk〉〈Ĥ〉 − 〈ÔkĤ〉). By inverting the matrix S, the direction along which
the parameters should be updated during the optimization reads

δα =
1

2
S−1f . (2.34)

The vector f actually is the generalized force with respect to the parameters
α

fk ≡ −
∂E

∂αk
= −
〈ΨT|ÔkĤ + ĤÔk + ∂Ĥ

∂αk
|ΨT〉

〈ΨT|ΨT〉
+ 2
〈ΨT|Ôk|ΨT〉〈ΨT|Ĥ|ΨT〉

〈ΨT|ΨT〉2
(2.35)

= 2(〈Ôk〉〈Ĥ〉 − 〈ÔkĤ〉) (2.36)

since Ĥ is independent of the parameters α. Within each optimization step,
the matrix S and vector f are evaluated by standard VMC. At the end of the
step, all the parameters are updated as

α′ = α+ ∆δα = α+
1

2
∆s−1f . (2.37)

Given a sufficient small ∆ at each step, this iterative method gains an energy
difference

− fT(α′ −α) = −1

2
∆fTS−1f < 0 (2.38)

where the matrix S is positive definite. Compared to a conventional steepest
decent algorithm where the parameters are updated as

α′ = α+
1

2
∆f , (2.39)
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SR takes into account the inverse matrix S−1 and yields a more efficient
optimization. However, since S is computed in presence of statistical error,
it may be an ill-conditioned matrix with very small eigenvalues, which affect
the accuracy of its inversion S−1. This issue can be solved by regularizing the
elements of S on the diagonal, as suggested by ref. [26]

S∗i,i = (1 + ε)Si,i (2.40)

where ε is the regularization parameter. If ε is small, more accurate estimation
of S is required. On the other hand, if ε is too large the optimization slows
down. A typical value of ε we usually chose ranges 10−2 to 10−5.

In figure 2.1, the performance of SR shows that the energy goes down very
fast in the beginning but then starts to fluctuate due to a too large ∆. In
order to continue a efficient optimization, ∆ needs to be reduced when the
minimum is approaching. This is very inconvenient for users but it can be
easily avoided by the Hessian accelerator discussed in the next subsection.

2.4.2 Stochastic reconfiguration with Hessian accelera-
tor

In order to reduce the number of iterations required to achieve convergence
to the minimum energy, we have also used the SR with Hessian accelerator
method described in ref. [27], which utilizes the information of the second
derivatives of the energy with an efficient sampling of the Hessian matrix.
This method is quite similar to the one introduced in ref. [28] that has been
recently improved in ref. [29].

The details of this method will not be described here but we give an idea
how this method works. The energy as a function of the variational parameters
is expressed by employing the Taylor expansion up to second order as

E = E0 −
p∑
i=1

δαifi +
1

2

p∑
i,j=1

δαiHi,jδαj . (2.41)

By imposing ∂E
∂αi

= 0 for all i = 1, . . . , p, the minimum of E can be easily
reached by changing all the parameters α by δα

δα = H−1f . (2.42)

With this method, we no longer need to set the amplitude of each step ∆
since it has already been determined by the force and Hessian. As a result,
in figure 2.1, the curve of SRH never has the fluctuation like SR curve and
converges fastest among all methods.
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2.4.3 Stochastic reconfiguration with conjugate gradi-
ents

When the number of parameters is quite large, the direct application of the
above techniques based on the inversion2 of a large matrix with its leading
dimension equal to the number of variational parameters becomes very ex-
pensive. It is convenient to implement the scheme — SRH with conjugate
gradients — introduced in ref. [26]. This method requires a matrix inversion
only in a subspace constructed by the directions of the parameter updates in
the most recent n steps.

In the first iteration, the parameters are changed in the direction of g1 =
S−1

1 · f1 with S and f given by eqs. (2.40) and (2.36). At this step, the
curvature of energy for a small change in the variational parameters δα = γ1g1

can be computed efficiently in the way described by the SRH method. In
this way, by assuming the quadratic behavior of the energy, always valid
close to the minimum, it is possible to determine the optimal amplitude γ1 of
the parameter change which minimize the energy expectation value. In the
following n-th (n > 1) iteration, the variation of the parameters is given by

δα =
n∑
i=1

γigi (2.43)

where gi are defined analogously as

gi = S−1
i · fi (2.44)

and those gi(i < n) are saved during the previous iterations. Then at the
current iteration, we evaluate the subspace Hessian matrixHsub corresponding
to the second derivatives of the energy with respect to all gi(i = 1, . . . , n)
directions. With this information, we can easily obtain the optimal set of γi
which minimizes the energy.

We remark that this subspace technique allows us to change all the varia-
tional parameters without any restriction though the number of directions are
limited by the number of iterations. In fact, only the most recent directions
are important since they are sampled close to each other in a relevant region.
In practice, we only keep the latest several directions with the largest signal
noise ratio. In our test case (see figure 2.1), the efficiency of this method
improves as the number of directions increases. However, the convergence is
much slower than SRH due to the fact that in the beginning, for the i-th iter-
ation, the parameters are allowed to change only in these limited i directions.

2.4.4 Stochastic reconfiguration with signal noise filter

It has been shown in the previous subsection that the way to select the dom-
inant directions and evaluate the Hessian matrix only in a relevant subspace

2Matrix inversion has a complexity between O(n2.373) and O(n3).
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can save computational cost but requires more iterations to converge. In this
thesis we show another variant of the SRH method which also constructs a
Hessian in the subspace by applying the signal noise filter (SNF) but it has
an efficiency as good as the SRH and is also more robust than SRH.

Given a cutoff η > 0, we collect the parameters with their corresponding
generalized forces fk owning signal noise ratios (SNR)

|fk|
σ(fk)

> η . (2.45)

We call these parameters ‘significant’ ones and construct the Hessian matrix
by computing the second derivatives of energy with respect to these param-
eters only. In this way efficient optimization can be performed within this
subspace. However, usually at the beginning of the optimization, almost all
of the parameters are significant because they are all far from the values cor-
responding to the minimum. Therefore we can also impose a restriction on
the number of significant parameters to limit the leading dimension of the
Hessian matrix subspace.

In the SRH-CG method, the directions computed by S−1f are not actually
the optimal ones since they might be large because of a large noise while the
SNF directly excludes such possibilities. Figure 2.1 displays that SRH-SNF
requires less than 10 iterations to reach the convergence. It is by far the best
optimization given its efficiency, robustness and also low computational cost.

22



Chapter 3

Jastrow correlated
antisymmetrized geminal power
wavefunction

3.1 Introduction

The wavefunction ansatz is of fundamental importance for the efficiency, relia-
bility and accuracy of both variational and diffusion Monte Carlo calculations.
The repeated evaluation of the wavefunction with also its gradient and Lapla-
cian is one of the most consuming part of the computation. The physical
observables measured by VMC are directly affected by the properties of the
trial wavefunction. Therefore, the optimal choice of such wavefunction should
maximize the quality in the description of the physics for the systems of in-
terest. As a projection technique, DMC is less affected by the quality of the
wavefunction ansatz, but it is still not free from it. A good wavefunction
guides the random sampling in the phase space in an efficient way with the
importance sampling technique [9]. In the fermionic systems, the accuracy of
the fixed node approximation depends very much on the quality of the nodal
surface (defined by Ψ = 0) of the guiding wavefunction. Only when the guid-
ing wavefunction coincides with the exact wavefunction, the FNA becomes
exact. For the above reasons, we should seek wavefunctions that are both
accurate enough and cheap to evaluate.

A typical wavefunction choice consists of an antisymmetric determinant
part ψA(r) and a symmetric part J(r) called Jastrow factor. The whole
wavefunction is written as their product

ΨQMC(r) = ΨA(r)J(r) . (3.1)

The determinant part can be chosen simply as a product of spin-up and
spin-down single Slater determinants [5] or more complex forms like antisym-
metrized geminal power (AGP) [30, 25], Pfaffian [31] or linear combination of
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multiple determinants. The Jastrow factor mainly takes into account the elec-
tron correlation which is missing in the determinant part of the wavefunction
and it recovers most part of the correlation energy. The interplay between de-
terminant and Jastrow provides good wavefunctions with favorable accuracy
and feasible computational cost.

This chapter is organized as following: sections 3.2–3.4 describe AGP,
hybrid orbitals and molecular orbitals used in the determinant part of our
wavefunction ansatz. Section 3.5 focuses on the parametrization and physical
correspondence of the Jastrow factor employed in our calculation.

3.2 Antisymmetrized geminal power wave-

function

H2 is a very simple example to show how a chemical bond forms. When two
hydrogen atoms approach to a distance where their valence electrons interact
with each other, these two electrons form a singlet pairing state. The spin part

1√
2
(| ↑↓〉−| ↓↑〉) satisfies the antisymmetry and its orbital part is a symmetric

function of two valence electron coordinates f(r, r′) = f(r′, r), called pairing
function. In fact, this wavefunction describes the singlet ground state exactly
at all inter-atomic distances, a well known case where the restricted Hartree-
Fock solution fHF(r, r′) = φ(r)φ(r′) fails at large distance.

Since the 50’s, many theoretical studies explaining superconductivity have
highlighted the role of pairing electrons in material science. The BCS wave-
function is an ansatz in which the correlation is introduced through the prod-
uct of pairing functions. This ansatz had already been exploited in quantum
chemistry in the pioneering work of Hurley et al. [32] to treat correlation
effects in molecular properties. This particle-conserving version of the BCS
ansatz is called antisymmetrized geminal power (AGP).

The AGP wavefunction is constructed with the pairing function f in real
space. For an unpolarized system with N electrons in a singlet state, the AGP
wavefunction is written as

ΨAGP(r↑1, . . . , r
↑
N/2, r

↓
1, . . . , r

↓
N/2) = A

[
F (r↑1, r

↓
1)F (r↑2, r

↓
2) · · ·F (r↑N/2, r

↓
N/2)

]
,

(3.2)
where the operator A antisymmetrizes the product of geminals in the square
bracket and the geminal is a singlet

F (r↑i , r
↓
j ) = f(r↑i , r

↓
j )

1√
2

(| ↑↓〉 − | ↓↑〉) . (3.3)

Therefore, one can easily write the spatial part of ΨAGP in a compact form

ΨAGP(r↑1, . . . , r
↑
N/2, r

↓
1, . . . , r

↓
N/2) = detA (3.4)
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where A is a N
2
× N

2
square matrix defined as

Aij = f(r↑i , r
↓
j ) . (3.5)

As commonly done in previous studies, the pairing function is expanded
in a basis set of single particle orbitals as

f(r↑i , r
↓
j ) =

M∑
a,b

La∑
p

Lb∑
q

λ{a,p},{b,q}φ
a
p(r
↑
i )φ

b
q(r
↓
j ) (3.6)

where indices p/q = 1, . . . , La/b label different atomic orbitals φ residing at
the position Ra/b of nuclei a/b respectively and M is the total number of

nuclei. The matrix λ has a size L × L, where L =
∑M

a La. Its non-zero
element λ{a,p},{b,q} represents the strength of a valence bond formed by an
orbital p on the atom a and an orbital q on the atom b. Therefore, λ describes
the resonance of all the valence bonds contained in the system. If there’s no
breaking of spin symmetry, λ is symmetric and this implies that the number of
independent parameters is L(L+ 1)/2. Moreover, if the system satisfies other
symmetries, the corresponding constraints can be applied to the elements of
λ for reducing the number of independent parameters.

3.3 Hybrid orbitals

The orbital hybridization is one of the key concepts in valence bond theory.
In 1932, Linus Pauling first developed this theory to explain the structure
of simple molecules such as methane (CH4) using atomic orbitals. Pauling
pointed out that the reason why CH4 has four equal strength C-H bonds
separated by the same tetrahedral angle is that the one s and three p orbitals
of the carbon atom form four equivalent combinations or hybrid orbitals. The
concept was developed for such simple molecule, but its way of describing the
wavefunction is general and it has been widely applied.

In order to obtain reliable results by QMC, a good wavefunction should
be not only accurate but also compact with a limited number of variational
parameters because all these parameters will be optimized within VMC. One
way to achieve a compact wavefunction is to use atomic hybrid orbitals. The
idea is very straightforward, namely that the contribution to a valence bond
from many atomic orbitals which sit on the same atom can be represented
as a single atomic hybrid orbital. Since the number of bonds formed by an
atom and its neighbors is limited, only a few hybrid orbitals for each atom
are needed for constructing the wavefunction. Hybrid orbitals can be easily
extended in terms of a very large basis set at much lower cost, in principle up
to the so called complete basis set limit. Therefore, atomic hybrid orbitals are
very suitable for constructing compact and accurate wavefunction for QMC.
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An atomic hybrid orbital ψ̄a centered on the nucleus a is expanded as a
linear combination of single particle orbitals centered on a

ψ̄{a,p}(r) =
La∑
l

cpl φ
a
l (r) . (3.7)

We can use several such collective orbitals instead of many individual orbitals
to describe valence bonds. By replacing the atomic orbitals in eq. (3.6) with
hybrid orbitals, the AGP wavefunction can be constructed with pairing func-
tions expanded as

f(r↑i , r
↓
j ) =

M∑
a,b

Lhyb
a∑
p

Lhyb
b∑
q

λ{a,p},{b,q}ψ̄{a,p}(r
↑
i )ψ̄{b,q}(r

↓
j ) , (3.8)

which contains a much smaller number of parameters to be optimized. The
size of λ reduces to L × L, where L =

∑M
a Lhyb

a since the number Lhyb
a of

hybrid orbitals belonging to the atom a is much smaller than the number La
of atomic orbitals.

To see how hybrid orbitals help in reducing the number of optimizable
parameters, let us compare the number of independent parameters in the
AGP wavefunction of liquid water constructed with and without hybrid or-
bitals. Suppose the average number of atomic orbitals per atom is Lavg, the
size of λ is MLavg × MLavg and the number of independent parameters is
MLavg(MLavg + 1)/2 ≈ (MLavg)2/2. Since the liquid has very low symme-
try, the only symmetry imposed on the wavefunction is that λ is symmetric.
When hybrid orbitals are used to construct the pairing function, we suppose
the average number of hybrid orbitals per atom is Lhyb

avg , the size of λ becomes
MLhyb

avg ×MLhyb
avg and λ contains ≈ (MLhyb

avg )2/2 independent elements. Even
though the hybrid orbitals require MLhyb

avgLavg extra parameters, this is only
a minor amount compared with those contained by λ when M is large. Thus,
the total number of parameters is reduced by a factor of (Lhyb

avg/Lavg)2.
However, the scaling of the number of parameters with the system size M

remains as M2. Is there a way to further improve this scaling? The answer is
yes. The locality approximation (LA) can achieve a linear scaling. The idea is
very similar to the ‘neighbor list’ algorithm used by molecular dynamics that
the interaction between two particles is considered only when one is within
a range RMAX (distance cutoff) of the other. Analogously, if two atomic or
hybrid orbitals reside on two nuclei close enough, the corresponding element
in λ, namely their interaction term, is non-zero and optimized. Otherwise,
that element is fixed to zero forever. Suppose each nucleus has at maximum
MNB neighbor nuclei within a safe distance cutoff, the number of parameters
to be optimized in λ is only ≈MMNB(Lhyb

avg )2/2, proportional to M .
In summary, with the help of atomic hybrid orbitals and LA, we are able

to obtain a wavefunction ansatz which has a perfect balance between accuracy
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and computational cost. We finally remark that expressing the pair function
f with atomic hybrid orbitals is not a prerequisite for applying LA. Indeed,
LA can be directly applied to λ in eq. (3.6) with a basis of atomic orbitals.

3.4 Molecular orbitals

By employing very simple linear algebra, the AGP wavefunction can be viewed
as an extension, introduced by M. Marchi et al. [33], of HF wavefunction
which is based on molecular orbitals (MO). Molecular orbitals are usually
constructed by combining 1) atomic orbitals

ψ̃(r) =
M∑
a

La∑
l

ca,lφ
a
l (r) , (3.9)

or 2) hybrid orbitals from each atom of the molecule,

ψ̃(r) =
M∑
a

Lhyb
a∑
p

ca,pψ̄{a,p}(r) , (3.10)

or 3) other molecular orbitals from groups of atoms. Because MOs are capable
of describing a state extending over all atoms, they have the advantage over
atomic (hybrid) orbitals for giving a clear Fermi surface by occupying the
number of MOs corresponding to the number of electrons.

In order to rewrite the pairing function into a diagonal form with MO ψ̃
as

f(r↑i , r
↓
j ) =

L∑
k

λ̃kψ̃k(r
↑
i )ψ̃k(r

↓
j ) , (3.11)

we need to solve a generalized eigenvalue problem considering that the atomic
orbitals or hybrid orbitals are not necessarily orthogonal to each other. The
eigenvalue λk represents the weight of the kth MO. If f is expanded with
atomic or hybrid orbitals, MOs are constructed with the corresponding type
of orbitals given in eqs. (3.9) and (3.10). After the transformation, the pairing
function turns into a one particle density matrix. If the summation is trun-
cated at N/2, namely N/2 MOs, the AGP wavefunction coincides with HF
wavefunction. ψ̃k(r

↑
i ) and ψ̃k(r

↓
j ) are the elements of two matrices D↑ and

D↓ for spin-up and spin-down electrons respectively. Indeed in this case, the
AGP wavefunction can be factorized in the conventional form of a spin-up
determinant times a spin-down determinant

ΨAGP = detA = det(D↑,TλD↓) = (detλ)|D↑〉|D↓〉 (3.12)

where the determinant of the diagonal matrix λ with λ̃k on its diagonal con-
tributes to the wavefunction only as an irrelevant prefactor. If the MOs for
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spin-up and spin-down electrons are identical, our AGP wavefunction repre-
sents a restricted Hartree Fock (RHF) solution. On the other hand, if the
electrons with opposite spins occupy different sets of MOs, the AGP repre-
sents an unrestricted Hartree Fock (UHF) solution. As a matter of fact, many
QMC packages implement |D↑〉|D↓〉 as the antisymmetric determinant part
of their wavefunction ansatz.

Before discussing the scheme for the optimization of MOs, let’s see why
MO is not an optimal representation for optimization. Again, we measure the
number of independent parameters which should be optimized in our wave-
function. Given the same assumption of Lavg and Lhyb

avg that we made in the
previous section, each MO requires MLavg parameters with atomic orbitals
or MLhyb

avg with hybrid orbitals. The number of MOs is also proportional to
the number of electrons as well as M . Therefore, the total number of free
parameters scales as M2 and we are not allowed to use LA because MOs are
global instead of being localized around the nuclei.

As discussed in subsection 3.3, the quadratic scaling of optimizable pa-
rameters in the AGP representation turns into a much more favorable linear
scaling when LA is employed. For this reason, the VMC optimization in the
AGP representation performs better. During the optimization, the full pair
function is recast as a combination of AGP and MOs

f(r↑i , r
↓
j ) =

L∑
k,l

λk,lψk(r
↑
i )ψl(r

↓
j ) (3.13)

=
L∑
k,l

δλk,lψk(r
↑
i )ψl(r

↓
j ) +

U∑
k

λ̃kψ̃k(r
↑
i )ψ̃k(r

↓
j ) , (3.14)

where ψk can be atomic or hybrid orbitals and the orbital index notation has
been simplified by merging atomic index and atomic (hybrid) orbital index
and the number U of MOs is the chosen rank of full AGP λ matrix and ranges
from N/2 (Slater determinant) to L (full-rank AGP). The initial MOs can be
imported from HF or DFT calculations and then optimized by VMC. For each
VMC optimization step, only the parameters in the AGP part are updated
from 0 to δλ in such a way that the rank of λ is constrained to be fixed to
U within linear order in δλ, while the MO part is frozen. After that, the
summation of those two parts is diagonalized again and the new set of MOs is
filled. After the diagonalization, in the case of HF like wavefunction shown in
figure 3.1, the weights of the MOs below the Fermi surface are redistributed
from all values equal to 1 to a wide range in order to gain variational energy
while the above ones are not occupied by electrons and thus have weights
almost zero.1 If the determinant part of the wavefunction is desired to be HF
like, the elements of δλ are all reset to zero and all λ̃k are set 1 before the next
QMC optimization step starts. With this approach, the MOs are optimized
in a very stable and efficient way.

1Not exact zero due to the statistical noise.
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Figure 3.1: λ̃k associated with the kth MO. This wavefunction for the simula-
tion of 32 water molecules contains 128 MOs.

3.5 Jastrow factor

In QMC calculations the multi-dimensional integral for the estimation of ob-
servables (usually energy) is computed statistically. This allows us to use
wavefunctions constructed by any types of parametrization. In principle, we
could use an extremely complicated wavefunction as close as possible to the
ground state but, in practice, the evaluation of such a wavefunction will be
computationally prohibitive. As a feasible choice, we have to take a reason-
ably accurate wavefunction which implies the presence of a sizable statistical
noise in the evaluation of energy and its derivatives. According to the zero
variance principle, a better wavefunction provides a smaller variance of the
energy. Thus, in order to reach a certain accuracy, the amount of statistics
can be reduced and save some computation. However, a better wavefunc-
tion often costs more on its own evaluation due to a much more complicated
parametrization. So the optimal choice for a good wavefunction should reach
a balance between its computational cost and accuracy. Fortunately, we know
that although the AGP or SD wavefunctions built by Hartree-Fock (HF) or
density functional theory (DFT) calculations are usually not accurate enough,
they are fairly good as a starting point for building more accurate ones. As
is well known, the missing key component of these wavefunction is the elec-
tron correlation. Therefore, one of the largest gains in accuracy comes from
the introduction of the so-called Jastrow factor which recovers most of the
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dynamical electron correlation.
The Jastrow factor is a product of several components expressed as

J(rσ11 , r
σ2
2 , . . . , r

σN
N ) = J1J2J34 (3.15)

where J1, J2 and J34 are the one-body, two-body and three/four-body Jas-
trow. With one-body and two-body Jastrow, the wavefunction satisfies nu-
clear (electron-nucleus) and electron (electron-electron) cusp conditions [34],
respectively. Cusp conditions are constraints imposed on the derivatives of
the wavefunction. For particle-particle coalescence, it can be shown that

dΨ(r)

dr

∣∣∣∣
r=0

= ξΨ(r)
∣∣
r=0

(3.16)

where Ψ is the many-body wavefunction and r is the particle-particle separa-
tion. ξ is −Z for the cusp condition of an electron and a nucleus of charge
Z, and 1/4 and 1/2 for parallel and anti-parallel spin electrons, respectively.
When the wavefunction fulfills the cusp conditions, its local energy doesn’t
diverge at the coalescent positions, which is always a favorable condition
for QMC. The three/four-body Jastrow further improves the description of
the correlation between electron-ion pairs including dipole-dipole interaction,
namely the van der Waals force. All components of the Jastrow factor are
discussed one by one in this chapter.

We’ve mentioned in section 3.2 that the HF fails for H2 molecular when
two hydrogen atoms stay at large distance. When the Slater determinant
obtained from HF is correlated with a Jastrow factor, the dissociation of
these two Hydrogen atoms goes to the right limit, as shown in ref. [35].

It should be noted that in this section φ{a,q}(rj) refers to the atomic Jas-
trow orbitals and the electron coordinates are labeled as rσii , i = 1, . . . , N
where σi is the spin of the electron i.

3.5.1 One-body and two-body Jastrow

The one-body Jastrow is designed to satisfy the nuclear (electron-ion) cusp
condition. Even though it’s also possible to impose the cusp condition di-
rectly on the determinant part of the wavefunction by introducing more in-
volved atomic orbitals, this increases the computational cost and also brings
inconvenience during the optimization because certain constraints must be
preserved on the orbital coefficients. Instead, by introducing a set of free pa-
rameters in the Jastrow, the nuclear cusp condition can be easily satisfied and
these parameters can be optimized without constraints by efficient algorithms.

The form of the one-body Jastrow is chosen as

J1(rσ11 , r
σ2
2 , . . . , r

σN
N ) = exp

[
N∑
i

M∑
a

(
(2Za)

3
4u
(

(2Za)
1
4 |ria|

)
+

La∑
p

φ{a,p}(ria)

)]
(3.17)

ria = |ri −Ra| (3.18)
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where the function u which is used to satisfy the nuclear cusp conditions is
written in the same way of ref. [36] as

u(r) =
1

2b
(1− e−br) (3.19)

and φ{a,p} is the same set of Jastrow atomic orbitals as those used by
three/four-body Jastrow which will be discussed later. Notice that in the one-
body Jastrow we have chosen an exponentially converging function because
the one body term is supposed to correct the charge density near the nuclei
and negative electronic charge is obviously exponentially localized around the
positive nuclear charge. For the same reason, we have chosen them as STO or
GTO such that they have smooth behavior around nuclei when ria → 0 and
do not affect the mentioned cusp conditions.

The most widely used Jastrow term is the two-body Jastrow which takes
into account the many-body effect of interacting electrons and recovers a large
portion of the correlation energy. The form of two-body Jastrow reads

J2(rσ11 , r
σ2
2 , . . . , r

σN
N ) = exp

(
N∑
i<j

u(rσii , r
σj
j )

)
, (3.20)

where the pair correlation function u is chosen as the Fahy form [37]

u(rσii , r
σj
j ) =

aσiσjrij

1 + bσiσjrij
, (3.21)

rij = |ri − rj| . (3.22)

In order to fulfill both electron cusp conditions, a should be 1/4 for paral-
lel spins and 1/2 for anti-parallel spins. However, such choice introduces a
spin contamination, namely the wavefunction ansatz no longer describes an
eigenstate of the spin square operator Ŝ2 (its efficient evaluation is described
in appendix B) as pointed out in ref. [38]. Actually the exchange interaction
of electrons has been considered in the determinant part of our wavefunc-
tion ansatz, and therefore the probability of coalescence of two electrons with
parallel spins is very low due to the Pauli exclusion principle. Therefore,
we’d rather avoid spin contamination and fulfill only electron cusp condition
for anti-parallel spins by choosing a = 1/2 for both cases. As for the other
parameters bσiσj , we fix all of them equal to b which becomes the only opti-
mizable parameter in our two-body Jastrow. The final function u is simplified
as u(rσii , r

σj
j ) =

rij
2(1+brij)

.
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3.5.2 Three/four-body Jastrow

The three/four- body Jastrow is an inhomogeneous two electron interaction
term which has the following form

J34(rσ11 , r
σ2
2 , . . . , r

σN
N ) = exp

(
N∑
i,j

g(rσii , r
σj
j )

)
(3.23)

g(rσii , r
σj
j ) =

M∑
a6=b

La∑
p

Lb∑
q

λjas
{a,p},{b,q}φ{a,p}(ria)φ{b,q}(rjb)

+
M∑
a

La∑
p,q

λjas
{a,p},{a,q}φ{a,p}(ria)φ{a,q}(rja) (3.24)

where φ{a,p}, p = 1, . . . , La are Slater or Gaussian types of atomic Jastrow
orbitals centered on the nucleus a. Those orbitals are exactly the same ones
that appear also in the one-body Jastrow (3.17). The pair correlation func-
tion g consists of the four body part for the electron-nucleus-nucleus-electron
interaction if a 6= b, namely the first term in (3.24), and the three body part
for the electron-nucleus-electron interaction if a = b, namely the second term
in (3.24). The elements of the matrix λjas connect two electron-nucleus pairs.
It should be noticed that the form of the pair function g (see (3.6)) is very
similar to the pair function f in the determinant. The symmetry of λ can be
applied to λjas analogously.

This choice of three/four-body Jastrow has the following features:

• The presence of these terms doesn’t affect the nuclear and electron cusp
conditions already fulfilled by the one-body and the two-body Jastrow
factors.

• If λjas is spin independent, the wavefunction remains intact without spin
contamination. However, it’s also possible to include a spin-sensitive
part in the pair correlation function by modifying λjas as

λjas = λjas
charge + λjas

spinσiσj , (3.25)

in order to gain variational energy.

• When atoms fall apart, it factorizes into a product of individual contri-
butions located on each atom and, therefore, meets the requirement of
the size consistency.

Now let’s see an interesting example, the Beryllium dimer. Beryllium atom
has two electrons in both 1s and 2s orbitals, namely completely closed shells.
So the weak interaction between two atoms leads to a very shallow binding.
The main contribution of the binding energy is given by the so called van
der Waals interaction. For this reason, the Beryllium dimer is a very good
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method equilibrium distance [Å] binding energy [mHa]
VMC 2.54 4.05(4)

DMC [40] 2.46 2.82(3)
DMRG [41] 2.45 4.30(4)

i-FCIQMC [41] 2.45 4.21(4)
Exp. [42] 2.44 4.24
Exp. [43] 2.44 4.26

Table 3.1: The equilibrium distance and binding energy of Be2.

test case for benchmarking both methods for electronic structure calculations
and experiments. In the theoretical calculation, many methods like HF and
DFT fail to provide a good binding and the correct dissociation limit. DFT
significantly overbinds Be2 by a factor 3 and the total energy of the molecule
is higher than two individual atoms at large inter-atomic distance. As for
experiments, the correct measurement of the Be2 binding was only achieved in
2009, very recently. The old experiments gave very large equilibrium distance.
So we challenge this interesting system with our VMC calculations.

In the full CI calculation [39], one billion of determinants was used with
a (9s,2p,1d) basis set. We use a much cheap but still accurate wavefunc-
tion to recover the full binding energy of two Be atoms. It only requires
one determinant built from (5s,2p,1d) atomic orbitals for each atom and 4
MOs for 8 electrons plus a full Jastrow factor with its three/four body terms
expanded in the (4s,4p,2d) basis set. Figure 3.2 clearly shows that two Be
atoms dissociate into the correct limit — twice the energy of Be atom —
at large distance. More interestingly, if the four-body part of the Jastrow
is removed from the wavefunction, the curve shows similar defects as DFT
calculation. It means the four-body Jastrow plays a key role in describing van
der Waals interactions for weakly bonded systems.

Our VMC calculation of Be2 gives a molecular binding at 2.54(4) Bohr with
a binding energy 4.05(4) mHa which are very close to the values obtained by
DMRG and i-FCIQMC and also the experiments listed in table 3.1.
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Chapter 4

Molecular dynamics with
quantum Monte Carlo

4.1 Introduction

In the last decade, much progress has been made for the simulation of elec-
tronic systems by quantum Monte Carlo (QMC), namely by a fully ab-initio
approach aimed to solve in a stochastic way the Schrödinger equation, with an
appropriate and consistent description of the electron correlation. Only a few
years ago, a very general and robust method of optimization was introduced
by C. Umrigar et al. [29], that has made it possible to determine by QMC
a variational wavefunction containing up to several thousands of parameters
[44, 26]. This progress is particularly remarkable, as the variational Monte
Carlo (VMC) method was introduced in the early 60’s [7] and, until a few
years ago, only a few tens of parameters were optimized within the VMC ap-
proach. Another recent and important development in QMC was the solution
[45, 46, 47] of the infinite variance problem occurring in the straightforward
calculation of nuclear forces in the simplest variational Monte Carlo scheme
[45, 47]. Moreover, thanks to the algorithmic differentiation [48, 49], the cost
of computing all the force components in a system containing several atoms,
can be afforded with a computational time at most a factor four larger than
the one corresponding to the energy. This progress has led to several works,
where structural optimization and highly accurate evaluations of the equilib-
rium configurations as well as related properties were possible even for quite
large systems containing several atoms [50, 51, 52, 53, 54, 55].

Despite this remarkable progress, we notice that ab-initio molecular dy-
namics (MD) simulation based on quantum Monte Carlo remains so far at a
very early stage, as only a few simulations on liquid hydrogen [56, 47, 35, 57]
are known. Instead, within the DFT community, MD simulations in the
Born-Oppenheimer (BO) approximation, are quite well established, due to
almost three decades of achievements from the pioneering work of Roberto
Car and Michele Parrinello [58]. Indeed, DFT-based MD simulations are
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routinely used to study several properties of condensed matter systems
at ambient conditions up to extremely high pressures and temperatures
[59, 60, 61, 62, 63, 64, 65, 66, 67], and represents nowadays a quite reliable tool
to predict new materials, sometimes more effective or at least much cheaper
than experiments.

The application of quantum Monte Carlo for ab-initio simulation of ma-
terials or large chemical compounds remains difficult not only because of the
heavy computational cost, but also, in our opinion, due to the theoretical
difficulties in applying the Newton’s equations of motion when the forces are
given with a statistical uncertainty. For instance, the basic law of energy
conservation cannot be met at all, when the forces are not exactly given at
each step. In this context, it is worth mentioning that Ceperley and Dewing
have introduced the penalty method [68] that does not rely on any dynamics,
and therefore is not affected by this problem. In their method the canoni-
cal distribution is directly sampled without using forces, while the statistical
uncertainty in the knowledge of the energy is compensated by rejecting the
proposed moves more frequently than in the standard Metropolis algorithm.
Unfortunately this method is very expensive, especially in the low tempera-
ture regime, because of too many rejected moves, and so far applications have
been limited to hydrogen with up to 54 protons in this regime [69, 70, 71].

Generally speaking it is clear that, when the computational cost for the
calculation of the nuclear forces is comparable to that of the energy, MD
should be more efficient, because with the same cost all the atoms are moved
in a statistically relevant region of the phase space, without any rejection. For
instance in DFT, where the forces are obtained almost for free by applying
the Hellmann-Feynman theorem, MD is a common practice to sample the
canonical distribution, and, to our knowledge, only hybrid methods based on
Monte Carlo and MD [72] can be competitive.

In this chapter, the method of computing forces within QMC and the
improvements on its technical implementation will be discussed in section 4.2.
In the following section 4.3, we will show how to reduce the infinite variance
of the Pulay forces. In the section 4.4, the new type of molecular dynamics
scheme which is driven by forces evaluated by QMC will be discussed. In the
last section 4.5, the features of the covariance matrix are discussed and the
advantage of its use is displayed.

Our ab-initio MD simulations are performed via variational quantum
Monte Carlo (VMC) by employing the TurboRVB QMC package [73].

4.2 Force evaluation with quantum Monte

Carlo

Unlike in DFT, obtaining forces with QMC is by far more difficult. By assum-
ing the Born-Oppenheimer approximation, the nuclei are treated as classical
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particles and the 3M -dimensional force acting on all the M atoms is defined
as

F ≡ −∇REV[Ψ] , (4.1)

where ∇R is the gradient relative to the Cartesian coordinates R of all the
nuclei and EV[Ψ] is the variational energy associated to the electronic wave-
function Ψ corresponding to R. As a functional of Ψ, EV[Ψ] depends on R
through the Hamiltonian Ĥ and the wavefunction Ψ which has an implicit
dependence in the parameter set α that has to be optimized variationally by
minimizing the variational energy for the given R, and an explicit dependence
if ψ is defined in the localized basis set, as our case. Therefore, the local energy
eL which appears in the evaluation of EV[Ψ] also depends on R through both
the Hamiltonian and the wavefunction.

Eq. (4.1) can be factorized in the following analytic expression

F = F HF + F Pulay + Fα (4.2)

F HF = −
〈Ψ| ∂

∂R
Ĥ|Ψ〉

〈Ψ|Ψ〉
(4.3)

F Pulay = −2
〈Ψ|ÔRĤ|Ψ〉 − 〈Ψ|ÔR|Ψ〉EV

〈Ψ|Ψ〉
(4.4)

Fα = −∂EV

∂α

∂α

∂R
(4.5)

where the three components F HF, F Pulay and Fα are given respectively by
the explicit dependence on R of the Hamiltonian and the explicit and implicit
dependence of the wavefunction.

In principle, the term Fα is the most complicated because the deriva-
tives ∂α

∂R
are very difficult to evaluate. Fortunately, when the parameter set

α is optimized to reach the minimum of EV, ∂EV

∂α
= 0 for each component

and Fα is exactly zero. Therefore, we can safely ignore Fα in our calcula-
tions. The other two terms F HF, F Pulay are referred as the Hellmann-Feynman
term and the Pulay term. The Hellmann-Feynman term resembles the force
computed by applying the Hellmann-Feynman theorem. Actually, in VMC
calculations, the Hellmann-Feynman theorem is not applicable because the
wavefunction is neither an eigenstate of Ĥ nor normalized. Only when the
wavefunction approaches an eigenstate of Ĥ, the Pulay term becomes zero
and the Hellmann-Feynman term converges to the exact Hellmann-Feynman
force.

We can also consider the Cartesian coordinates R as optimizable param-
eters and the forces as energy derivatives with respect to them. By joining
them with the parameters of the wavefunction we can achieve the structural
and wavefunction optimization at the same time.

In practice, the forces can be computed with the finite difference method.
The force component p = 3(a − 1) + i acting on atom a in the direction of
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i ∈ {1, 2, 3} which represents x, y or z, is computed as

Fp = −EV(R+~ip∆)− EV(R)

∆
+O(∆) (4.6)

where ~ip is the pth unit vector in the 3M -dimensional coordinate space and
∆ is the displacement of the atom considered. ∆ is chosen small enough
such that the finite difference error is negligible. However, the straightforward
application of any finite difference method is very inefficient. When the energy
values of two configurations are obtained by independent measurements, the
error of the energy difference remains similar to the error of the energy due to
the propagation of errors. Thus, the error in the energy derivatives diverges as
1
∆

as ∆→ 0. This issue has been solved by the introduction of two technical
improvements.

The first one is the correlated sampling (CS) [74] which allows the compu-
tation of the energy derivatives with errors much smaller than those obtained
in the straightforward way. By employing the same Markov chain for two
sets of nuclear coordinates R1 within a very small distance (∆ in our way of
computing forces), the statistical error in the energy difference goes to zero as
∆→ 0 and the corresponding error in the energy derivative remains finite.

The other improvement is the space warp coordinate transformation
(SWCT) [75]. We will not explain this method in detail and the interested
readers can refer to ref. [74]. The CS plus SWCT implementation was first
introduced for structural optimization [25]. In this thesis we just remark that
the net force felt by an isolated molecule should be exactly zero. In practice,
only after the SWCT the estimator of the net force gives zero variance, namely
the translation invariance is fulfilled.

In the limit ∆→ 0, the finite difference forces computed by the correlated
sampling converge to the analytic forces. However, the analytic differentiation
of forces also has intrinsic infinite variance. In the Hellmann-Feynman term,
the derivative ∂

∂R
Ĥ diverges when the electrons are very close to the nuclei and

also when they are close to the nodal surface defined by ΨT = 0. Meanwhile,
the Pulay term diverges when a configuration approaches the nodal surface.
To solve these issues, large improvements have been done using the reweighting
methods for the stochastic sampling [45, 46, 47, 50]. Ref. [45] solves the infinite
variance problem of F HF contribution due to very close electron-ion distance
while ref. [47] and ref. [50] solve the infinite variance problem at the nodal
surface of both F HF and F Pulay contributions for periodic boundary systems
and open boundary systems. In the next section, the solution to the infinite
variance on the F Pulay term for both boundary conditions will be discussed.

A further step for efficient and accurate QMC forces has been recently
introduced by S. Sorella and L. Capriotti [48]. In the finite difference way, 3M

1We can also measure the energy difference of two consecutive sets of wavefunction
parameters by correlated sampling during the wavefunction optimization.
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energy evaluations are required to compute all the forces by displacing each
ionic coordinate individually. They introduced the algorithmic differentiation
(AD) which is capable of computing all the components of the ionic forces in
a computational time only four times larger than the time of a VMC energy
calculation.

By employing all the techniques above, we are able to realize the calcu-
lation of forces at an affordable computational cost with increasing system
size.

4.3 Solution of the infinite variance problem

for the forces

As mentioned in the introduction section of this chapter, the reweighting
method was introduced to solve the analytic infinite variance problem on the
evaluation of forces. In VMC, a generic operator Ô is evaluated statistically
by averaging samples distributed according to a probability π(x) = Ψ2

T(x) as

〈Ô〉 = 〈OL〉π(x) . (4.7)

Instead, we can use another arbitrary distribution W (x) to accumulate sam-

ples and all the samples are reweighted by a factor π(x)
W (x)

in order to recover

the correct evaluation of Ô as

〈Ô〉 =

〈
OL

π(x)

W (x)

〉
W (x)

/〈
π(x)

W (x)

〉
W (x)

. (4.8)

This method is called reweighting method and how good W (x) is chosen
determines the efficiency of the sampling. C. Attaccalite et al. [47] em-
ployed this reweighting method to solve the infinite variance issue in the
proximity of the nodal surface by using a different probability distribution
P (x) ∝ W (x) = ΨG(x)2, defined in terms of a guiding function ΨG(x),
rather than the standard sampling π(x) = ΨT(x)2.

The guiding function ΨG(x) is defined in terms of the wavefunction ΨT(x)
as follows:

ΨG(x) =
Rε(x)

R(x)
ΨT(x) (4.9)

where R(x) is a ‘measure’ of the distance δ from the nodal surface and is
assumed to work for δ � 1, where ΨT(x) ∝ R(x). The Rε(x) is the function
that regularizes ΨT in the vicinity of the nodal surface, namely for δ ∝ R(x) <
ε, and it is defined as:

Rε(x) =

{
R(x) if R(x) ≥ ε ,
ε[R(x)/ε]R(x)/ε if R(x) < ε ,

(4.10)
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where the nontrivial regularization for R(x) < ε is introduced in order to
satisfy the continuity of the first derivative of ΨG(x). The guiding function
ΨG(x) defined in this way and its corresponding probability density function
P (x) ∝ ΨG(x)2 define a reweighting factor(

ΨT(x)

ΨG(x)

)2

=

(
R(x)

Rε(x)

)2

= min

[
1,

(
R(x)

ε

)2(1−R(x)
ε )
]

(4.11)

that in the proximity of the nodal surface, i.e. R(x) → 0, is ∝ δ2, whereas

the probability density function P (x) ∝ ε2
(

ΨT(x)
R(x)

)2

∝ ε2 remains constant

but finite. This P (x) slightly enhances the sampling in the vicinity of the
nodal surface where π(x) vanishes. So far, our reweighting method removes
the singularities up to δ−2 and provides finite variance.

The regularization scheme which [47] proposed to evaluate R(x) is based
on the matrix A (defined as (3.5)) that appears in the determinant (anti-
symmetric) part of the QMC wavefunction. As soon as the configuration of
electrons approaches the nodal surface, det(A) → 0 and the elements of the
A−1 become extremely large. The reason why det(A) is not chosen as R(x)
is that det(A) scales exponentially with the dimension N of the matrix A
(associated with the system size) because det(A) = ΠN

i=1λi where λi is the ith

eigenvalue of the matrix A. Instead, the summation of all the elements of the
A−1

N∑
i,j

A−1
ij ≈

N∑
i=1

λ−1
i (4.12)

has a polynomial scaling. According to this feature, the ‘measure’ function
R(x) for the regularization is chosen to be controlled by A−1

ij in the following
way:

R(x) =

(∑
i,j

∣∣A−1
ij

∣∣2)−1/2

. (4.13)

However, this scheme (4.13) does not take into account the case of open
systems like isolated atoms and molecules (the singularity type 4 in ref. [76]).
As an electron i samples a region very far from the center of mass R0 of
the nuclei, namely ri0 = ‖ri −R0‖ � 1, the decay of the many-body wave-
function is dominated by the determinantal part as the Jastrow correlation is
identically one in this limit. A simple inspection shows that det(A) behaves
as ∝ exp(−z̃minri0) [∝ exp(−z̃minr

2
i0)], where z̃min is the minimum exponent in

the Slater [Gaussian] basis. The R(x) choice in the old regularization scheme
defined by eq. (4.13) vanishes clearly in the same way. In order to show this
property, it is enough to apply the Rouché-Capelli theorem stating that the
inverse matrix elements A−1

ij can be expressed with the ratio of the adjugate
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matrix element adj(A)ij and the determinant itself, namely:

A−1
ij =

adj(A)ij
det(A)

.

Now we immediately arrive to the bad conclusion that the probability dis-
tribution P (x) is ill defined as it converges to a constant in the limit when
ri0 � 1, because, R(x) → 0 in the same way as ΨT(x) → 0 (as discussed
above), and the resulting distribution P (x) is not normalizable. In practice
this means that the random walk for long enough simulation will be unstable,
and all electrons are pushed to very large distance from the atoms, providing
unpredictable and certainly biased results.

In order to overcome this clear instability we replace the A in (4.13) with
A′. The new matrix A′ is defined by changing its asymptotic behavior for
large ri0:

A′ij = Aij exp(zri0 + zrj0) , (4.14)

where z can be any positive value. In fact the new regularization will act
in the same way close to the nodes of ΨT, whereas when ri0 � 1, det(A′)
decays as exp[−z̃minr

2
i0 + zri0] for a Gaussian basis, and for a Slater basis, if

z̃min > z, it decays as exp[−(z̃min − z)ri0], and diverges otherwise. Therefore
P (x), by using this new definition of R(x), will decay as exp(−2zri0) in the
former cases, or as Ψ2

T itself in the latter case, yielding in any case a perfectly
defined and normalizable distribution.

In practice, if z is too small,A′ behaves too much likeA and the instability
remains. On the other hand if z is too large, the probability distribution P (x),
as we have seen, remains too close to the original one ' Ψ2

T for electron-
ion distances � 1/z, and therefore in this region the singularities in the
nodal surfaces remain, and the regularization is not effective also in this case.
Therefore, with this simple trick, and a reasonable value of z ' 1/ξ, where ξ is
the linear dimension of the important region of non vanishing charge density,
this numerical instability, present in open systems, is readily removed, and
the singularities around the nodal surfaces are perfectly controlled, because
the proposed regularization works exactly as the previous one [47] adopted for
PBC. Indeed, if electrons are close to this nodal surface det(A) = 0 and ri0
are all finite, the following equality

det(A′) = det(A)
N∏
i

exp(zri0) (4.15)

implies that the new regularization works as well as the previous one, being
the factor

∏N
i exp(zri0) just an irrelevant term.

With this regularization scheme based on a new choice of A′ for determin-
ing the reweighting factor, the infinite variance problem on the ionic forces
for open boundary systems is also solved in a simple and efficient way. Other
schemes are also possible like the one introduced by J.R. Trail [76] which is
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very inefficient from the computational aspect because it involves the calcula-
tion of the local energy at each Metropolis step. In the following calculations,
the regularization choice of ref. [47] is used for the simulation of liquid wa-
ter and the new regularization is employed for the calculation of variational
frequencies of small molecules.

4.4 Molecular dynamics with noisy forces

A second order Langevin dynamics (SLD) is used in the sampling of the ionic
configurations within ground state Born-Oppenheimer approach. Ionic forces
are computed with finite and small variance by algorithmic differentiation [48],
which allows feasible simulations of a large number of atoms. Moreover the
statistical noise, corresponding to the forces, is used to drive the dynamics at
finite temperature by means of an appropriate generalized Langevin dynam-
ics [47]. A similar approach has been proposed in ref. [77] and ref. [78] where
a SLD algorithm has been devised also at the DFT level. In this thesis we
adopt a different numerical integration scheme for the SLD which allows us
to use large time steps, even in presence of large friction matrices. For reason
of clarity and completeness, we present in this section the method introduced
in the original paper of C. Attaccalite and S. Sorella [47], with more details in
the derivations, whereas the more advanced techniques, that can be straight-
forwardly derived following the same analysis, are described in the Appendix
A.2.

Let us consider solving the set of differential equations of the SLD:

v̇ = −γ(R) · v + f(R) + η(t) (4.16)

Ṙ = v (4.17)

〈η(t)〉 = 0

〈ηi(t)ηj(t′)〉 = αij(R) δ(t− t′) (4.18)

where R,v,f , η are the 3N -dimensional vectors made by the positions, the
velocities, the deterministic and the stochastic forces of the N nuclei, respec-
tively, and the indices i, j run over all the 3N nuclear coordinates. The symbol
〈· · · 〉 indicates the average over the ensemble of possible realizations, and it
is used to define properties of the stochastic force η, which are determined by
the fluctuation-dissipation theorem, namely its instantaneous correlation α is
given by:

α(R) = 2T γ(R) (4.19)

where T ≡ 1/β is the temperature2 and both γ(R) and α(R) are 3N -
dimensional square matrices, implicitly depending on the atomic positions.

Notice that in the above equations we have assumed that all the masses of
the particles are set to unit values in atomic Rydberg units, namely twice the

2In this section the Boltzmann constant k is conventionally set to one for simplicity.
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electronic mass 2me is one in our conventions. In the following we will always
use unit masses, because, in order to sample the canonical distribution the
actual values of the masses are immaterial. In order to match the usual atomic
units, for instance in the hydrogen case already studied in Refs. [47, 35], the
time units have to be scaled by the square root of the ratio between the pro-
ton mass and twice the electron mass (

√
mp/2me ∼ 30.3). In a polyatomic

molecule — like water — the inverse mass of each different atom multiples
the force components f(R) in the commonly adopted Langevin equations.
However, also in this case, it is possible to reduce back to the case studied,
by a further appropriate scaling of the length of each particle (distinguishable
in classical dynamics). Thus our formulation is quite general up to an appro-
priate scaling of time and lengths,3 and therefore can be also used to study
the physical Newtonian dynamics — e.g. necessary to compute the diffusion
constant in liquid water — with γ → 0 and physical masses.

In eq. (4.19) one of the two matrices is arbitrary, and we can choose:

α(R) = α0I + ∆0α
QMC(R) (4.20)

γ(R) =
α(R)

2T
(4.21)

where I is the identity matrix, α0 and ∆0 are two constants that should be
suitably defined in order to minimize the autocorrelation time and therefore
the efficiency of the sampling, and the 3N -dimensional matrix αQMC(R) is
the variance-covariance matrix of the nuclear forces f(R) evaluated by QMC
at the nuclear configuration R, and it is defined as:

αQMC
ij (R) = 〈(fi(R)− 〈fi(R)〉) (fj(R)− 〈fj(R)〉)〉 (4.22)

where 〈· · · 〉 refers to the average over the QMC sampling. In practice, αQMC

is computed as Cs(δ) in eq. (5.21) (see Section 5.2.3 for more details).
We now assume only that in the time interval

tn − τ/2 < t < tn + τ/2,

n indexing the time steps tn = n× τ , the positions R are changing very little
and, within a good approximation, we can neglect the R dependence in the
RHS of eq. (4.16), and indicate R(tn) = Rn. The second equation (4.17) can
be integrated easily once the value of a velocity is known at a given time:

Rn+1 −Rn ' τv(t) (4.23)

3 In an electronic system containing atoms with different masses, we can scale each

length xi corresponding to a mass Mi by xi =
√

1
Mi
x′i. After a little algebra one obtains

the Langevin equation with unit masses given in eq. (4.17) and a scaled friction matrix
γ′i,j = γi,j/

√
MiMj with the fluctuation dissipation theorem written in the same form as

in eq. (4.19).
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where tn ≤ t ≤ tn+1. A better way to integrate the equation is given in the
Appendix A.2. For the time being we assume the above simple form, and for
a better accuracy it is useful to consider that the velocities vn are computed
at half-integer times tn − τ/2:

vn ≡ v(tn − τ/2) (4.24)

and the quantities that are functions of R in eq. (4.16) are calculated in Rn:

fn ≡ f(Rn) (4.25)

γn ≡ γ(Rn). (4.26)

In this small time integration interval once the values of f(R) = fn and
γ(R) = γn are assumed constant, the solution to eq. (4.16) is given in a closed
form in eq. (A.7) of the Appendix, with the initial time t̄ and the final one t
arbitrary:

v(t) = exp [γn(t̄− t)]vn

+

t∫
t̄

exp [γn(t′ − t)] [fn + η(t′)] dt′ (4.27)

In this way, after substituting the initial and final time with tn ∓ τ/2 a
Markov chain of the following form is obtained:

vn+1 = e−γnτvn + Γn · (fn + η̃) (4.28)

Rn+1 = Rn + τvn+1 (4.29)

namely we have singled out the “noisy” corrections to the force components
in eq. (4.28) (fn + η̃) by defining the following quantities:

Γn = γ−1
n (I− e−γnτ ) (4.30)

η̃ =
γn

2 sinh(γnτ/2)

tn+τ/2∫
tn−τ/2

eγn(t−tn)η(t) dt (4.31)

By using that [α,γ] = 0 and a little algebra, the correlator defining the
discrete (time integrated) noise can be computed by substitution of eq. (4.31)
in eq. (4.18) and is given by the following 3N × 3N matrix:

〈η̃iη̃j〉 = ᾱ = Tγ2
n coth(γnτ/2) (4.32)

The simulation temperature T appearing in the above expression is an
input parameter of the dynamics. If the discretization of the SLD is accurate
enough this temperature should be related to the mean square velocities mea-
sured during the dynamics (〈v2

i 〉 = T/2 for each Cartesian component). In the
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forthcoming sections we refer to this quantity as the “effective temperature”
Tmes, as Tmes − T can be used to judge the quality of the approximations in
discretizing the SLD.

As discussed also in ref. [47] (see also Section 5.2.3), all the QMC force
evaluations f are affected by an intrinsic stochastic noise, that usually deter-
mines an effective temperature higher than the target one. This problem can
be avoided, by means of the noise correction introduced in ref. [47]. Indeed we
can follow the correct dynamics by adding to the QMC noise of the force the
external noise η̃ext so that the total noise η̃ satisfies the correct expressions
in eq. (4.32). In this way, we have to subtract the 3N × 3N QMC correlation
of the forces αQMC from the above described correlation matrix ᾱ and obtain
that:

ᾱext = ᾱ−αQMC (4.33)

is the true external noise we have to add to the force components during
the dynamics. Indeed the correlation matrix αQMC can be independently
evaluated during the dynamics and the computation of eq. (4.22) is possible
with some statistical error. In this way, we can take into account that QMC
forces are affected by a correlated noise, and obtain, in principle, an unbiased
simulation following the correct SLD.

In order to confirm that our SLD scheme samples the exact partition func-
tion Z =

∫
dx exp(−V (x)/kT ), we have also done a conventional Monte Carlo

simulation with the fitted potential for the water monomer. In figure 4.1, both
simulations show a perfect agreement in the internal energy at various tem-
peratures consistent with the harmonic approximation up to 1000 K.

4.5 Role of the force covariance matrix

After several tests, we have discovered that the value of ∆0, optimizing the
efficiency of the calculation, is not necessarily the minimum one, i.e. ∆0 = τ .
Indeed much larger time steps and better performances are possible if ∆0 �
τ . In order to understand this behavior, it is important to realize that the
covariance matrix αQMC obtained with QMC is empirically proportional to
the dynamical matrix (see figure 4.2). Therefore with a finite and large ∆0

the high energy modes with high frequency vibrations can be systematically
damped, and this clearly allows a faster propagation with larger time step τ .

According to F. Tassone et al. [79], the optimal choice of the friction used
by damped dynamics is determined by the lowest frequency mode in order to
have the least possible slowdown in that mode. This can be easily understood
through a system consisting of several damped oscillators. The equation of
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Figure 4.1: The internal energy of the water monomer in SLD simulations
with QMC and MC simulations with the fitted potential at various temper-
atures. Since this potential expanded up to the fourth order is fitted with
forces, the zeroth order coefficient is set to zero and the QMC internal energy,
for comparison, is shifted by -17.24909(3) Ha which is the lowest possible vari-
ational energy with NQMC = 20480 and nopt = 20. In these calculations, for
simplicity, only coordinates x

H1
, x

H2
and y

H2
are free. Therefore, the internal

energy should be 3
2
kT if Harmonic approximation is assumed.

motion for this system reads

R̈ = −γṘ+ f(R) (4.34)

f(R) = −KR (4.35)

γ = 2ξ , (4.36)

where K is the dynamical matrix and γ = 2ξ is the friction matrix. In
the following, for simplicity, we assume that [γ,K] = 0. We can solve this
equation by assuming a solution

R = exp(−W t) , (4.37)

where W is, in general, a matrix with complex elements. By substituting this
assumed solution (4.37) back to eq. (4.34), we can obtain that

W = ξ ± i
√
K − ξ2 . (4.38)

In order to have the shortest correlation time, the optimal value of ξ is
√
K

which maximizes the real part of W and achieves the fastest damping. In the
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Figure 4.2: Eigenvectors of the 3 × 3 correlation matrix αQMC which is con-
structed by fxH1
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(x
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, x
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and y
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are chosen as internal coordi-
nates). These eigenvectors correspond to the three vibrational modes of the
water monomer: bending (red), symmetrical (blue) and asymmetrical (green)
stretching. The smaller eigenvalue of αQMC corresponds to the lowest fre-
quency vibrational mode. The eigenvalues in the plot are all rescaled by the
lowest eigenvalue. The experimental values are fundamental frequencies.

case of [79], a friction matrix γ is replaced by a single value γ, the optimal
value γopt is chosen as ωmin which is the square root of the smallest eigenvalue
of the matrix K.

In our MD scheme, the covariance matrix of the forces which implicitly
includes the information of the dynamical matrix has already been utilized to
build the friction matrix. When a large ∆0 is used, the eigenvalues of γ spans
a wide range. When these eigenvalues from the smallest to the largest ones
map to the vibrational frequencies also from the smallest to the largest ones,
the optimal choice of the frictions can be met by all the vibrational modes and
much better performances is obtained compared with the standard method
where only the lowest frequency mode is considered [79].

The largest possible time step τ is constrained by the highest frequency
mode because it should be smaller than at least 1/2 the time period of the
highest frequency mode. Since the high frequency modes are damped very
much, a larger time step τ can be used in our MD scheme. Meanwhile, since
the low frequency modes are much less affected by the damping, increasing τ
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Figure 4.3: The average step length of collective ionic moves (upper), mea-
sured temperature (middle), internal energy (lower) as a function of the time
step τ with ∆0 = 4, 8, 16 in test case water monomer.

also speed up more these modes than those high frequency modes.
In the figure 4.3, the curves with ∆0 = 4, 8, 16 are converged as τ <

1.5, 2.0, 3.0 fs respectively. As ∆0 increases, the length of the average ionic
move decreases due to the increasing friction and thus the temperature and
internal energy are stabilized at large τ . Therefore, large ∆0 allows us to
get benefits from large integration time step without hurting the accuracy.
Let’s consider the average length of each collective ionic move ||Rn −Rn−1||
during the MD simulation as the dominant parameter for the integration
error and make the plots. In the figure 4.4, the curves of internal energy
with ∆0 = 4, 8, 16, 64 coincide with each other. This implies that the error of
internal energy is directly related with the average ionic move ||Rn −Rn−1||
instead of τ . On the other hand, the curve of measured temperature with
large ∆0 choice shows a much better temperature control of our dynamics. In
summary, large ∆0 is recommended for both increasing the efficiency, accuracy
and stability of our molecular dynamics simulation.

It has already been shown in ref. [35], that the present integration scheme
of the Langevin equations is much better than the Euler integration method.

48



 100

 200

 300

 400

 500

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18

T
e

m
p

e
ra

tu
re

 (
K

)

Average ion move (Bohr)

150
∆0=4
∆0=8

∆0=16
∆0=64

-17.2485

-17.2475

-17.2465

-17.2455

-17.2445

In
t.

 E
n

e
rg

y
 (

H
a

)

∆0=4
∆0=8

∆0=16
∆0=64

Figure 4.4: The internal energy Eint and measured temperature T as func-
tions of average step length of collective ionic moves ||Rn −Rn−1|| in the MD
simulations of the water monomer with various time steps τ . The four sets of
simulations are performed with ∆0 = 4, 8, 16, 128 for water monomer at 150K.

In this thesis we also show that the present dynamics is also much more
convenient within QMC because we can use a friction matrix proportional to
the mentioned QMC covariance matrix (∆0 > 0). To this purpose we have
implemented exactly the same dynamics within the Quantum ESPRESSO [80]
package, and show in figure 4.5 that, within the DFT dynamics, only quite
smaller time steps τ are possible, just because in this case αQMC = 0, and it
is not possible to damp the too high frequency vibrations.

Thanks to this important property of the covariance matrix αQMC, our
SLD scheme driven by noisy QMC forces samples the phase space more ef-
ficiently than conventional SLD. Every coin has two sides and so does the
noise.
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Figure 4.5: Convergence of the internal potential energy and average ion dis-
placements as a function of the time step τ for the water dimer, obtained with
MD at 50 K. The offset energy (minimum of the PES) values of DFT and QMC
calculations are -34.410806 and -34.50405(4) Ha. The same α0 = 0.03 a.u. is
used for both. Our simulation with DFT becomes unstable when τ ≥ 1.8 fs.
Instead the QMC dynamics is always stable in the range studied because the
friction matrix in this case contains also an important non-diagonal contri-
bution proportional to QMC covariance matrix (see text and figure 4.2). In
the top panel we compare the average distance that ions experience at each
step in QMC and DFT dynamics. The increased stability achieved by using
this covariance matrix in the friction is therefore obtained with an almost
negligible slowing down of the QMC dynamics.
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Chapter 5

Vibrational frequencies

5.1 Introduction

As we have discussed in the previous chapter, at present QMC allows us
to compute forces with finite variance in an efficient way and we’ve already
introduced the MD scheme by means of the QMC evaluation of forces. In
this chapter, we’d like to systematically study how reliable this scheme is. In
particular we want to understand:

• how the noise in the forces affects the reliability of the dynamics,

• how the systematic error due to the discretization in time affects the
calculation in presence of noisy forces,

• how well the Born-Oppenheimer constraint is satisfied, namely how ac-
curately it is possible to evolve the electronic wave function following
the minimum energy condition. Indeed in a statistical method the varia-
tional parameters cannot be optimized with machine precision accuracy
and the departure of the wave function from its minimum energy may
represent an important bias requiring a careful study.

In order to answer to the above issues, we show the performance of QMC-
based approaches (including MD simulations) by benchmark calculations of
structural and vibrational properties of small molecules. These properties are
often of interest in Chemistry and Materials Science because they help the in-
terpretation of experiments, for instance of infrared and Raman spectroscopy
[81].

In ab-initio approaches the vibrational properties are usually obtained
within the Born-Oppenheimer approximation, that separates the electronic
and nuclear degrees of freedom. Thus, their evaluation relies on the proper-
ties of the potential energy surface (PES) in the neighborhood of the struc-
tural minimum of the molecule [81, 82]. The simplest approach is to as-
sume that the PES in the neighborhood of the minimum is well character-
ized within the harmonic approximation, so the frequencies are obtained from
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the diagonalization of the mass-weighted Hessian matrix [81], which is cal-
culated by performing static ab-initio computations in the minimum of the
PES, or in its neighborhood. This approach neglects the anharmonicity of
the PES, so “ad hoc” scaling factors [83, 84] have to be introduced in or-
der to compare with the experimental frequencies. The most accurate ap-
proaches [85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96] go beyond the har-
monic approximation, for instance taking the force fields of the PES around
the configurational minimum up to the fourth order expansion and using the
second order vibrational perturbation theory (PT2) [93, 94, 95, 96]. Other
ab-initio approaches are based on ab initio molecular dynamics simulations,
which directly includes finite temperature nuclear motions, and from the Lin-
ear Response Theory [97] and the Fermi Golden Rule, the Infrared and Raman
spectra can be directly obtained from the Fourier transform of dipole and po-
larizability autocorrelation functions [98, 82].

In this chapter we have evaluated the structural and vibrational properties
by using and comparing three different methods:

(i) with the Hessian, and in a few cases with higher order derivatives of the
PES that are estimated by a careful fit of independent measurements of
energy and forces. These quantities are calculated over a set of molec-
ular configurations arranged on a grid [96, 50] around the equilibrium
structure of the molecule;

(ii) same as i in the fitting by using the samples of energies and forces at
molecular configurations generated instead automatically by a QMC-
based MD simulation, at a given temperature T, with noisy forces [35];

(iii) by using time averaged correlations in a QMC-based MD simulation.

It is clear that, if the QMC-based MD simulation is consistent and the
BO constraint is correctly satisfied, all different methods should provide con-
sistent results, provided all sources of systematic errors can be removed in a
controlled way, in order to converge to unbiased evaluations of the geometrical
and vibrational properties.

In this chapter, we show that the method ii provides very accurate re-
sults with an efficiency comparable with the standard method i, whereas the
method iii is computationally very demanding and is used therefore here only
for testing the MD.The method ii, that we are proposing, is in our opinion
better than the standard one i because it can be easily and systematically
extended to complex systems containing several atoms. In such cases, it is
very difficult to work with the standard method, because it relies on a care-
ful choice of the grid of atomic positions that are used to fit the PES [96].
This method is difficult to be generalized to very complicated systems, and
in particular the grid cannot be generated by a black box tool, as it depends
instead on the user’s choice. Instead we propose here the much more general
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and flexible method ii, allowing a systematic and robust evaluation of har-
monic frequencies. In this technique, only a single parameter has to be tuned,
namely the target temperature of the MD simulation.

This chapter is organized as follows: in section 5.2 the three approaches
of evaluating vibrational properties are explained in detail; in section 5.3 we
describe the wave functions and the basis sets we use for all the molecules;
whereas the discussion of all sources of systematic errors related to the present
QMC dynamics is given in section 5.4; section 5.5 contains our results on
several molecules with some discussion; finally in section 5.6 we draw our
conclusions.

5.2 Calculation of vibrational properties

The standard method of calculating vibrational modes is well-known in the
literature [99]. In this section, we summarize the main formulas and introduce
the notations adopted in the rest of this chapter.

Within the Born-Oppenheimer approximation, the full Hamiltonian is sep-
arated into electronic and nuclear parts and only the latter is related to the
calculation of vibrational modes. The nuclear Hamiltonian Ĥ is a summation
of kinetic energy T̂ and potential energy V̂ . Given a molecule with N atoms,
Ĥ can be expressed in terms of 3N -dimensional Cartesian coordinates R:

Ĥ = T̂ + V̂ = −1

2

N∑
ξ

1

Mξ

∇2
ξ + V (R) , (5.1)

where Mξ is the mass of the atom ξ. Since the potential energy V (R) is gener-
ally assumed to be invariant under the translation and rotation of molecules,
it is independent of both the molecule’s center of mass and orientation. There-
fore, it can be written in terms of 3N − 6 (or 3N − 5 for linear molecules)
internal coordinates s̄.

Since the molecule is usually assumed to be semi-rigid, its potential en-
ergy can be simply recast in terms of the displacement from the equilibrium
structure R0, corresponding to the (local) minimum of the PES. The Carte-
sian displacement is X = R−R0. Similarly, the displacement in the internal
coordinates is s = s̄− s̄0.

In general, the mapping between Cartesian coordinates and internal coor-
dinates is curvilinear. With Taylor expansion, s becomes

si = Ba
iXa +

1

2!
Bab
i XaXb +

1

3!
Babc
i XaXbXc + · · · (5.2)

where i = 1, . . . , 3N −6 labels the internal coordinates and a, b, c = 1, . . . , 3N
label the Cartesian coordinates. The Einstein summation notation of re-
peated indices is assumed hereafter. The coefficients in the series are the
derivatives with respect to the Cartesian displacement: Ba

i = ∂si/∂Xa,
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Bab
i = ∂2si/(∂Xa∂Xb) and so on and so forth. The coefficients Ba

i in the
linear term define the so called Wilson B matrix.

Hence, the potential energy can be expanded around the equilibrium struc-
ture in terms of internal coordinate displacements as

V (s) = F 0 + F isi +
1

2!
F ijsisj +

1

3!
F ijksisjsk + · · · , (5.3)

where the coefficients in the expansion are defined as F 0 ≡ V , F i ≡ ∂V/∂si,
F ij ≡ ∂2V/(∂si∂sj), etc., calculated at s = 0. Clearly, all the coefficients
F i = 0. Since F 0 is an irrelevant offset for any vibrational modes, we ignore it
by putting V (s)−F 0 instead of V (s). In the rest of this chapter, V2 and V4
are used to indicate the potential energy surface expanded up to the second
and the fourth order respectively.

In the standard method of calculating vibrational modes within the har-
monic approximation, only the leading terms, i.e. the quadratic ones, are kept
in both the potential and kinetic energies while all the rest is neglected:

Vhar(s) =
1

2
F ijsisj =

1

2
s†Fs (5.4)

Thar(ṡ) =
1

2
(G−1)ij ṡiṡj =

1

2
ṡ†G−1ṡ , (5.5)

where ṡ is the time derivative of s, and the symbol † indicates the transpose.
Meanwhile, the (3N − 6)× (3N − 6) matrix G is calculated as

Gij =
N∑
ξ

3∑
α

1

Mξ

Bξ,α
i Bξ,α

j , (5.6)

where Bξ,α
i are the same linear terms defined in eq. (5.2), upon replacement

of the index a with the pair (ξ, α), indicating more explicitly the component
α corresponding to the atom ξ.

By introducing 3N − 6 normal coordinates q, the potential and kinetic
energies are recast as

Vhar (q) =
1

2

3N−6∑
i

λiq
2
i (5.7)

Thar(q̇) =
1

2

3N−6∑
i

q̇2
i , (5.8)

where λi = ω2
i are the harmonic force constants corresponding to harmonic

frequencies ωi.
1 Assuming the transformation between internal coordinates

1 We adopt in the chapter the conventional choice, that comes from spectroscopic con-
ventions, to report the wavenumber ν̄, expressed in cm−1, corresponding to the frequency
ω. They are related by the equation ω = 2πcν̄, being c the speed of light in a vacuum.
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and normal coordinates s = Lq, we replace s in eqs. (5.4) and (5.5) and
compare them with eqs. (5.7) and (5.8). The final relations are written in
matrix form as

L†FL = Φ, L†G−1L = I , (5.9)

where Φ is a diagonal matrix with λi on the diagonal and I is a 3N − 6
dimensional identity matrix. With some very simple algebra, eqs. (5.9) turns
intoGFL = LΦ which represents a standard generalized eigenvalue problem,
where λr are the corresponding eigenvalues. This approach is also called
Wilson’s GF method [99].

Ab-initio methods can be used to calculate the Hessian matrix F in
the potential energy, so that the application of the GF method is possible.
In the standard method, it is necessary to perform a very accurate struc-
tural optimization of the molecule, and then to calculate the derivatives for
the optimized geometry using analytic or finite-difference methods. A very
tight structural optimization is computationally very demanding for QMC,
thus alternative methods specifically engineered for stochastic-error affected
approaches are preferable, as discussed in ref. [96] and summarized in sec-
tion 5.2.1. We propose here other two possible approaches, described in sec-
tions 5.2.2 and 5.2.3.

We have reported also some results, labeled as fundamental frequencies,
coming from second order perturbation theory (PT2), that uses also the third
and forth order derivatives of V (s), in order to take into account of the an-
harmonicity of the PES. The use and implementation of PT2 in presence of
error affected PES have been widely discussed in Ref. 96, and we remand to
this reference.

5.2.1 Simple fitting method

The conventional way to obtain the Hessian of V is to fit the parametrized
Hessian matrix F with energies or forces computed at the chosen grid points
of the 3N multidimensional space defined by the nuclear positions. In each
of the 3N directions, at least 3 points are needed in the neighborhood of
the equilibrium position in order to fit the Hessian. Obviously, this requires a
tight (gradient < 10−5 a.u., for the harmonic approach) or very tight (gradient
< 10−7 a.u., for PT2) structure optimization criteria [96] which can be easily
achieved by self-consistent iterations in DFT or other deterministic methods.

However, these criteria are not feasible for QMC since all the energies and
forces calculated by QMC are error-affected. The stochastic error σQMC is in-
versely proportional to the square root of the number of QMC samples NQMC.
Thus, in order to have an error 10 times smaller, a calculation 100 times more
expensive is required. For this reason, the QMC stochastic errors are never
pushed to very small values, especially for vibrational property calculations.
Typically, the errors are σE ∼ 10−4 a.u. for energy and σF ∼ 10−3 a.u. for each
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force component. In brief, both the PES and equilibrium structure are very
much affected by the stochastic noise.

A. Zen et al. [96] proposed a multidimensional fitting scheme to obtain
the accurate Hessian and equilibrium structure. They showed that the fit-
ting with forces brings much less error than the fitting with energies. So we
stick to forces for the fitting. Moreover, for our calculations with the water
molecule we choose the “mesh-5” (see definition in ref. [96]), which consists of
59 independent grid points Rm. The fitting was achieved by maximizing the
likelihood function:

L(k|DF ) =
Nm∏
m

e−
1
2

∑3N
a,b (Cm

−1)ab∆Fam(k)∆Fbm(k)

(2π)3N/2
√

det(Cm)
(5.10)

for the parameter set k to fit the Nm QMC samples DF = {Rm,fm,Cm}m
where fm is the force calculated at Rm and Cm is the 3N -dimensional covari-
ance matrix of the fm (see definition eq. (4.22) and discussion in section 5.2.3),
and

∆Fam(k) = Fa(Rm,k)− fam
the difference between the QMC force fam of component a, calculated in Rm,
and the corresponding value of the parametrized force Fa(Rm,k). The prob-
lem of maximizing L(k|DF ) is equivalent to minimize the function:

Nm∑
m

3N∑
a,b

(Cm
−1)ab∆Fam(k̃)∆Fam(k̃) (5.11)

and, as discussed in ref [96], in the case that we can neglect the covariance be-
tween QMC force evaluations of the different components (i.e., we can assume
Cm diagonal, and the diagonal elements (Cm)aa = (σam)2 are the variance of
the QMC force evaluations of component a), the previous expression corre-
sponds to the chi-squared-function:

χ2
F =

Nm∑
m

3N∑
a

(
Fa(Rm,k)− fam

σam

)2

. (5.12)

We can quantify the quality of the fit by using the reduced-chi-squared func-
tion (goodness of fit):

χ2
red =

χ2
F

(3N ×Nm −Nk − 1)
, (5.13)

where 3N is the number of force components, Nm is the number of molecular
configurations considered and Nk is the number of fitted parameters. Accord-
ing to statistical theory, the closer χ2

red ' 1, the better the fit is.
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5.2.2 Fitting method with molecular dynamics

In the simple fitting method described in the previous section, the choice
of the grid points, where energy and forces are evaluated, is crucial for ac-
cessing accurate vibrational frequencies. A good mesh should span a region
neither too small, in order to be less affected by the stochastic noise, nor too
large, to avoid strong anharmonicity (which cannot be well described by sim-
ple parametrization of the PES in a truncated Taylor expansion around the
minimum). In order to reduce the systematic error, the best mesh should be
expanded along the directions of the normal coordinates which are however
known only after the fitting. An efficient compromise is to use internal coor-
dinates based on certain conventional rules. After the region and expansion
direction of the mesh is given, the density of the grid points should be also
chosen properly. Too sparse mesh limits the accuracy while too dense mesh
wastes computation. Since we did only once the evaluation of energy and
forces on each grid point in the simple fitting method, good optimization of
the wavefunction and accurate calculation of energy and forces are both neces-
sary and therefore expensive. Usually, for each step during the optimization,
relatively small statistics is used. In this way, the accuracy of the energy and
forces evaluated in the last iteration of the optimization doesn’t meet the nec-
essary precision for the fitting. So a further much longer run at fixed optimal
values of the variational parameters is required to compute the energy and
forces precisely. This has also the drawback that the error in the optimization
has to be negligible compared with the requested statistical error, a condition
that is difficult to control systematically.

With molecular dynamics, things are instead much easier. By controlling
only the temperature, a proper mesh is automatically decided by the trajec-
tory of the moving ions. Since the dynamics follows the normal modes, the
mesh has already been expanded around the best directions. The density and
range of the mesh is directly tuned by the temperature. Unlike the simple
fitting, now the same configuration will be approached several times during
the dynamics, and, as a consequence, the stochastic error will be alleviated
so that even quite low temperatures can be efficiently simulated. Since ions
move very little for each iteration of MD, a heavy optimization is no longer
necessary because the electronic wave function obtained in the previous iter-
ation of the dynamics is a very good starting point for the current iteration,
once only the positions of the atomic localized orbitals are consistently up-
dated. This is actually a very remarkable advantage to expand our electronic
variational wave function in terms of localized atomic orbitals. Indeed, after
a few optimization steps, the wave function is usually converged within given
statistical errors, and, as we will see later, the error in the optimization can
be systematically controlled. Apart from the cheap optimization, energy and
forces also require much less accuracy. In table 5.2, the error bars of the energy
and forces during the dynamics are about 40 and 60 times larger than those
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of the simple fitting. The values obtained in the last step of the optimization
are already sufficient and thus, a substantial amount of computation is saved.
The fitting procedure of the sampled configurations coming from molecular
dynamics is exactly the same described in the previous section, and we can
use eqs. (5.10)–(5.12).

In our tests on the water monomer, the anharmonic effects are quite strong
if the MD is performed at high temperature. We have systematically studied
the effect of the temperature in figure 5.1, where it is clear that anharmonic
effects can be neglected only below 50K namely when the temperature corre-
sponds to a frequency 50 times smaller than the lowest frequency of the system
(' 2300K). This criterion cannot be easily extended to larger systems as the
smallest frequency significantly drops, and a calculation at too small temper-
atures cannot provide enough information for the fit, yielding large statistical
errors for the frequencies. For this reason it is important to include in the fit
also the cubic and quartic terms, and, as it is also shown in figure 5.4, it is
really remarkable that we can obtain a very reliable and converged estimate
of the frequencies even at 1000K.

In order to improve further the fit, we generate more statistical samples
by taking advantage of the molecular symmetry. For example, H2O, H2S and
SO2 have the C2v symmetry while NH3 and PH3 have the C3v symmetry.
By simply swapping the positions and forces of each pair of H or O atoms
in the molecules, we obtain once or twice more samples, without an extra
computational effort. This procedure doesn’t change much the frequencies
and equilibrium geometry, as well as their statistical errors, but allows to
enforce the symmetry of a molecule, namely recovering all equal X-H bond
lengths and degenerate frequencies, if related by the mentioned symmetries.
We have used a similar method also in the simple fitting (previous subsection),
but in that case the purpose was mainly to reduce the number of points in
the grid and to save computer resources.

5.2.3 Covariance matrix method

The previous two methods of evaluating vibrational frequencies give very ac-
curate results but require an explicit parametrization of the PES in the neigh-
borhood of the minimum, as well as the reduction of the number of parameters
by using the symmetries of the molecule. To avoid this human overhead, we
introduce another way of computing vibrational frequencies based on the eval-
uation of few appropriate covariance matrices, described in the following.

By employing a simple Gaussian integral over the statistical weight
exp(−Vhar(s)/kT ) where Vhar(s) is defined in eq. (5.4) we easily obtain the
relation

C(s) = kTF−1 (5.14)
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Figure 5.1: Harmonic vibrational frequencies and equilibrium geometry of
water monomer obtained by fitting V2 (solid line) and V4 (dash line) as a
function of temperature. The values reported in the keys are obtained at 50K
for V2 and 1000K for V4.

where C(s) is the covariance matrix of the internal coordinates s according
to the definition:

C(s) = 〈(s− 〈s〉)(s− 〈s〉)†〉 (5.15)

where 〈· · · 〉 refers to the ensemble average while in practice it is computed
as the time average along the trajectory of MD. Therefore the matrix F ,
necessary in the Wilson’s GF method, can be obtained by computing C(s)
with a simple algebraic inversion and a scaling by kT .
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In a more direct method, the information of the matrix F can be obtained
by computing the covariance matrix of the forces. Indeed, the forces f(s)
defined as

fi(s) = −∂V (s)

∂si
(5.16)

have a very simple form if we can reliably work in harmonic approximation,
namely V (s) ' Vhar(s), and are:

fi(s) ' −Fs . (5.17)

Therefore the covariance matrix of the forces is more simply related to the
matrix F as

C(f) = kTF (5.18)

where C(f) is the covariance matrix of f similarly to eq. (5.15).
However, in QMC the forces are noisy and correlated since they are eval-

uated with the same Markov chains of finite length NQMC, namely

fnoisy ≡ 〈flocal〉 = fexact + δ (5.19)

where flocal is the local force evaluated in each QMC sample and δ is the
statistical error associated to the QMC evaluation of the force. In order to
obtain accurate frequencies, it is necessary to remove this bias for calculating
the covariance matrix of forces, which we have done in the following way.
The thermal average which is used to compute the covariance matrix can be
divided into two steps — the average of all electronic realizations generated
by quantum Monte Carlo at fixed ionic configuration s and the average of
all sets of ionic configurations obtained during the Langevin dynamics. In
the first step it is necessary to accumulate the covariance of the exact force
components which however are known only with some statistical error (fnoisy).
Therefore we can write fexact = fnoisy − δ, where the error δ depends on the
quantum Monte Carlo statistics and vanishes only for NQMC →∞. It follows
therefore that:

〈fexactf
†
exact〉s ≈ 〈fnoisyf

†
noisy〉s −Cs(δ) (5.20)

where the subscript s refers to the restriction of a given ionic configuration s,
whereas Cs(δ) is the covariance of the noise, that can be in turn estimated by
standard statistical methods using the finite number NQMC of Monte Carlo
electronic samples that we have used to compute statistically the force com-
ponents at a given ionic configuration s, namely

Cs(δ) ≈ 1

NQMC(NQMC − 1)

×
NQMC∑
j=1

(f j,slocal − f
s
noisy)(f j,s†local − f

s†
noisy) (5.21)
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where f j,slocal are the force components corresponding to an independent elec-
tronic QMC sample j. With a finite number NQMC of independent samples,
Cs(δ) scales as 1/NQMC and hence, the frequencies have a corresponding cor-
rection proportional to Cs(δ), implying that the bias scales as 1

NQMC
if the

proposed noise correction is not applied. We will show the clear advantage to
use this noise correction scheme in section 5.4.3.

5.3 Simulation setup

In all the following calculations we have used a variational wave function of
a standard Jastrow-Slater form expanded on a localized basis set. According
to our previous work [50] for the water monomer, we use (4s,5p,1d) primitive
basis with 4 hybrid orbitals on oxygen (in short notation, O:(4s,5p,1d)/{4})
and H:(3s,1p)/{1} in the determinant part, whereas the Jastrow is expanded
as a two-body part 1

2b
(1− e−br) with one body rescaled and a three-body part

with O:(3s,2p,1d)/{2} and H:(2s,2p)/{2} on hydrogen. Its VMC ground state
energy at the equilibrium geometry is −17.24927(3). During the dynamics,
the exponents of the primitive basis in both determinant and three body Jas-
trow are all fixed and only 232 parameters in total are optimized on the fly.
This basis is much more compact compared with the ones used in our previ-
ous work [50]. We have indeed verified that a larger basis does not improve
much the inter-atomic description but decreases only the total energy. On
the other hand, too many parameters make the optimization part too heavy
and inefficient during the dynamics. Hence, we have to choose a compromise
between accuracy and efficiency due to the available computational resources.
Despite this limitation, we are generally working close to the Complete Basis
Set limit as long as relevant chemical properties are concerned, thanks also
to the rapid convergence in the basis set obtained within explicitly correlated
wavefunctions, satisfying for instance all the electron-electron and electron-ion
cusp conditions even with a finite basis set.

For H2S, SO2, NH3 and PH3 molecules, the basis sets used for the deter-
minant part of the wave function are listed in table 5.3. The Jastrow has the
same two body part as H2O and its three-body part consists of (3s,2p,1d) on
N/O/P/S and (2s,2p) on H.

In our calculation, energy-consistent pseudo-potentials (ECP) of Burkatzki
et al. [100] are used to replace the core electrons of N, O, P and S atoms in
order to have a reduced computational cost. Helium core is used for both N
and O and Neon core is used for both P and S.
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5.4 Control of all the sources of systematic

errors in QMC dynamics

In the standard electronic structure calculation based on molecular dynamics,
there are essentially three systematic errors to take into consideration: the
time step τ used to integrate the SLD equations of motions, the accuracy in
satisfying the Born-Oppenheimer approximation and the total time of sim-
ulation tTOT. In the following we consider simple small molecules such that
the simulation time is much larger than any reasonable correlation time of the
system, so that this error can be safely neglected for simplicity. In QMC we
have to take into account also that, at each step of the discretized dynamics
in eqs. (4.28), only a statistical evaluation of the forces fi with a finite number
of samples NQMC is possible. This yields a statistical error ∝ 1√

NQMC
, that

can be decreased very slowly with the computational time ∝ NQMC.

5.4.1 Time step error

As far as the time step τ error, this is simple to control, because unbiased
solutions of the SLD equations of motion can be obtained by reducing τ to a
sufficiently small value, within any reasonable integration scheme. In QMC
we can perform the limit of τ → 0 for instance at fixed NQMC. As long as
there is no other source of bias (see next subsection) other than a finite NQMC,
we expect to have unbiased results for τ → 0 even within QMC, as explained
in the following. After the time integration of the SLD equations in a small
time interval τ the statistical noise associated to the forces is multiplied by the
integration time τ in eq. (4.28), that is negligible compared to the stochastic
part ∝

√
2Tτ used to keep the temperature within the given target. In this

way the systematic QMC error is expected to vanish linearly in τ and for
τ → 0 the exact canonical distribution can be sampled,

exp(−V (R)/kT ) (5.22)

where V (R) is the BO-energy surface corresponding to a variational wave-
function ψα,R defined by several variational parameters α for given atomic
positions:

V (R) = Minα
〈Ψα,R|HR|Ψα,R〉
〈Ψα,R|Ψα,R〉

(5.23)

This error can be made in principle smaller by the “noise correction” scheme
that was introduced in a previous work [47]. In practice, as it is shown in
figure 5.2, the convergence in τ looks very well behaved and a reasonable
accuracy is obtained also by using quite large time steps. In this case the
mentioned noise correction scheme does not lead to a meaningful improvement
probably because the use of a finite large ∆0 = 8 makes our dynamics more
stable and less sensitive to the stochastic noise.
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Figure 5.2: The measured temperature and internal potential energy versus
the time step used in the dynamics of water monomer. The target temperature
is set at 150K, the friction is 0.3 a.u. and ∆0 = 8.0. The minimum of the
PES is −17.24909(3) Ha. At each step of MD we perform nopt ' 10 steps of
optimization, where all energy derivatives are estimated with NQMC = 20480
samples generated by the Metropolis algorithm with 80 proposed attempts
for each new sample (acceptance rate ' 50%). The same plot, without using
the noise correction (see eq. (4.33)) is also shown. The dashed lines indicate
the “exact” results for the average temperature and the internal energy, the
latter obtained by sampling exactly the fitted potential.

5.4.2 Error in sampling the BO energy surface

In the previous estimate of the error in τ we have to assume that, given the
atomic positions, the energy derivatives of the BO energy surface V (R) can
be computed statistically, but without systematic bias. This means that the
variational parameters α are exactly at the minimum energy condition that
defines V (R) in eq. (5.23), and only in this case the forces are unbiased.
Unfortunately this condition is never met in a statistical optimization of the
variational parameters and some approximation has to be done in practice.
In the following we introduce the control parameter nopt. Each run of MD
is obtained by performing several thousand iterations of the SLD discretized
with a time interval τ . For each step of MD, we perform nopt optimization
steps of the electronic wave function with the SRH-CG method described in
subsection 2.4.3. For nopt →∞ and fixed NQMC, the optimized wavefunction
converges to an approximate minimum of the BO energy surface where the
energy derivatives, namely the atomic forces, differ at most by 1√

NQMC
from

the exact BO ones. Therefore, we have found that it is convenient to study
long, well equilibrated MD simulations at fixed statistical accuracy (i.e. NQMC

fixed) and given τ , by increasing nopt in a systematic way. In the optimization
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Figure 5.3: Harmonic vibrational frequencies of water monomer obtained by
fitting V2 with samples generated by MD simulation at 150K as a function of
QMC optimization steps nopt.

method we have used a given tolerance ε = 0.001 in the inversion of the
ill conditioned overlap matrix S corresponding to the chosen set of atomic
orbitals used in the Jastrow and the determinantal part of our wave function.
As now well established, the knowledge of this matrix S is extremely useful
for an efficient optimization scheme (see ref. [26, 101]). Moreover, for the sake
of a stable and systematic optimization technique we have also attenuated
the wave function change predicted by the SRH-CG method by 50%. As
it is shown in figures 5.3 and 5.4, the finite nopt error is probably the most
important one in QMC, because several optimization steps are necessary to
achieve converged frequencies, especially the high frequency ones. Notice that,
in this plot we use the fitting method, and the systematic error in τ , as defined
in the previous subsection, is not present. Despite the slow convergence in
nopt, it is quite evident that, by using nopt ≥ 10 the simulations are still
affordable and the error bars of the frequencies are quite small with reasonable
computational resources, even for large nopt. In these plots the error bars have
been evaluated by the standard Jackknife technique.
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Figure 5.4: Harmonic vibrational frequencies of water monomer obtained by
fitting V4 with samples generated by MD simulation at 1000K as a function
of QMC optimization steps nopt.

5.4.3 Residual QMC error due to a finite number of
samples

Once all the above sources of error have been controlled, we are still left with
the Monte Carlo statistical noise, namely the fact that we have to work with
a finite number of samples NQMC for each iteration of the dynamics. Among
the various techniques considered in this chapter, this error affects mostly the
method described in section 5.2.3.

As we have mentioned in the previous section this systematic error is af-
fecting the evaluation of the energy derivatives by an error of order 1√

NQMC
.

This means that the variational parameters α have a typical error of this mag-
nitude 1√

NQMC
during the MD simulation. However, since the energy at the

minimum is affected quadratically by the error in the variational parameters,
we can expect that all the frequency estimates, based only on energy expecta-
tion values, show a much smaller error inversely proportional to the number
of sampling NQMC. This is readily seen in figure 5.5 where the calculation
of frequencies is seen to converge linearly in 1

NQMC
. In this calculation it is

also simple to identify the most important source of error, that is due to the
stochastic estimation of the covariance matrix of the forces. Once we correct
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this source of bias described in section 5.2.3, we see that this error is almost
negligible (see figure 5.6).

Indeed, the other two fitting methods are also affected by the statistical
correlation of the force components due to the finite QMC samples NQMC.
A better control of this bias is obtained by minimizing the function given
in eq. (5.11) instead of the one corresponding to eq. (5.12) in section 5.2.1.
In table 5.1, the two sets of frequencies labeled with ‘cov’ are done with the
force covariance matrix, and differ very little from the simpler ones where
different force components are assumed to be uncorrelated. This means that
this approximation is almost correct in practice.

Finally, in order to quantify more clearly the statistical error, we have also
performed a calculation with NQMC doubled and we have not been able to
measure a sizable departure from the measured frequencies (see table 5.1, the
harmonic frequencies at 150K, ‘db’ indicates double NQMC).

In this thesis we have not shown how these different errors will affect larger
systems, but it is clear that all the sources of errors, that we have described
in detail in this section, can be systematically reduced by changing three
parameters τ → 0, nopt,NQMC → ∞ in the same way we have done for the
smaller system simulations.

5.5 Results

In this section we summarize our final results on the water monomer in ta-
ble 5.1, as well as the calculation of frequencies for several systems of chemical
interest within our Jastrow-Slater ansatz (see tables 5.3 and 5.4).

As far as the water monomer is concerned, the much smaller χ2
red (χ2

red ∼ 1)
obtained by fitting samples generated by our molecular dynamics is superior
to the one obtained in the standard approach (χ2

red > 4) with a fixed grid.
In the data for the geometry, the H-O-H angle, a very sensitive parameter,
has been improved significantly (0.11 ◦ closer to the experimental value) and
the O-H bond length, a rather insensitive parameter, remains very good. The
two sets of harmonic frequencies for the V2 and V4 fitting are both consistent
within the error bars. According to our experience, the anharmonic fit in-
cluding the V4 term is preferred and more robust thanks to its more accurate
parametrization of PES. Furthermore, for the same amount of computation
time, the frequencies obtained by V4 fitting have statistical errors about one
half smaller than those of the V2 fitting and even smaller than the ones of
the simple fitting. In addition, the figures 5.3 and 5.4 show a very nice fea-
ture — the lower the frequency is, the smaller the corresponding error is. On
the other hand, the calculation based on the covariance matrix method shows
that this technique requires much more statistics than all the other methods
because it requires a simulation much longer than the correlation time, that
in turn, can be extremely large at low temperatures.
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Figure 5.5: Vibrational frequencies of the water monomer obtained with the
force-force covariance matrix without noise correction as a function of 1/NQMC

from MD simulation at 300K. The prefactor 2048 on the slope of the linear
extrapolation doesn’t change the intercept for the limit 1/NQMC → 0.

Name χ2
red Grid points σ(E) (Ha) σ(F ) (a.u.) Cpuh BG/Q

simple fitting V4 4.444 59 9.0E-5 1.5E-4 22.2k

MD fit V2 50K 1.007 13784 3.5E-3 6.2E-3 24.0k

MD fit V4 1000K 1.021 13784 3.7E-3 6.3E-3 23.5k

Table 5.2: Specifications of the fitting with manually chosen grid and MD.

The other four molecules we considered are divided into two groups — AB2

and AB3. In the first group, we use the same parametrization of the Hessian
as in H2O because this type of nonlinear AB2 molecules is very similar to
H2O. The other group consists of two non-planar AB3 molecules. The Hessian
matrices used in both groups are simplified by using the molecular symmetries
in order to improve the accuracy. We choose both JHF and JAGP types of
wave function to compute the vibrational frequencies and compare them with
CCSD(T) and experimental data from NIST database [103, 104].

H2S molecule has 8 valence electrons which is exactly the same as the
water monomer. In table 5.3, the equilibrium geometry obtained with JHF
wavefunction but without the optimized exponents (JHF nooptZ) gives the
worst values. After optimizing the exponents, both geometry and frequencies
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Figure 5.6: Vibrational frequencies of water monomer obtained with force-
force covariance matrix plus noise correction as a function of 1/NQMC from
MD simulation at 300K.

are improved, in agreement with the conclusions of ref. [50]. For this reason, we
have optimized all the exponents at equilibrium positions for all the remaining
molecules studied. By using the JAGP wavefunction, the H-S-H angle of the
equilibrium geometry is further improved as compared with experiments and
the fundamental frequencies lower by ∼10 cm−1 for each mode in the best
calculation reported in table 5.4. Compared with the experimental data, its
RMS difference from fundamental frequencies is only 19 cm−1.

SO2 molecule has 18 valence electrons and requires a calculation much
heavier than H2S. Similar to H2S, the use of JAGP wave function provides
better results than those obtained with JHF wave function. Its RMS difference
of fundamental frequencies from experimental values is 50 cm−1. Even though
CCSD(T) frequencies are much closer to the experiments, we should notice
that they are harmonic frequencies rather than fundamental ones and the
equilibrium geometry of CCSD(T) (+0.023 nm for S-O bond and -1.1 ◦ for O-
S-O angle) is much worse than our values (-0.013 nm for S-O bond and +0.5 ◦

for O-S-O angle).
Both NH3 and PH3 have 8 valence electrons. Since we do not include

the anharmonic correction for the fit, we compare their harmonic frequencies
with the corresponding ones calculated with CCSD(T). For both molecules,
the frequencies obtained with JAGP wavefunction are again better than those
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name Basis set
equilibrium geom. GS energy

bond (nm) angle (◦) Hartree

H2S S-H H-S-H

JHF nooptZ S:(7s,8p,1d)/{4} H:(3p,1d)/{1} 1.33216(6) 92.00(3) -11.40043(2)

JHF S:(5s,4p,1d)/{4} H:(3p,1d)/{1} 1.33180(5) 92.42(2) -11.40902(2)

JAGP S:(5s,4p,1d)/{5} H:(3p,1d)/{3} 1.33237(5) 92.36(2) -11.41154(2)

CCSD(T) aug-cc-pVTZ 1.3419 92.299 –

Exp. – 1.328 92.2 –

SO2 S-O O-S-O

JHF S:(6s,6p,1d)/{6} O:(6s,7p,1d)/{5} 1.4180(2) 119.91(6) -42.27474(8)

JAGP S:(6s,6p,1d)/{6} O:(6s,7p,1d)/{5} 1.4193(2) 120.06(6) -42.28255(7)

CCSD(T) aug-cc-pVTZ 1.4553 118.367 –

Exp. – 1.432 119.5 –

NH3 N-H H-N-H

JHF N:(6s,6p,1d)/{4} H:(3p,1d)/{1} 1.00886(3) 107.01(1) -11.74967(2)

JAGP N:(4s,4p,1d)/{4} H:(3p,1d)/{1} 1.01014(3) 106.53(2) -11.7512(3)

CCSD(T) aug-cc-pVQZ 1.0128 106.541 –

Exp. – 1.012 106.67 –

PH3 P-H H-P-H

JHF P:(6s,7p,1d)/{4} H:(3p,1d)/{1} 1.40925(7) 93.72(1) -8.34788(1)

JAGP P:(6s,7p,1d)/{4} H:(3p,1d)/{1} 1.41067(5) 93.580(9) -8.34899(1)

CCSD(T) cc-pVTZ 1.4186 93.501 –

Exp. – 1.421 93.3 –

Table 5.3: Total energies and geometries of the structural minimum of H2S,
SO2, NH3 and PH3 molecules. Potential V4 is fitted for H2S and SO2 while
only V2 are fitted for NH3 and PH3.

corresponding to JHF wavefunctions. Both NH3 and PH3 have equilibrium
geometries very close (<0.01 nm for N/P-H bond and <0.1 ◦ for H-N/P-H
angle) to those obtained by CCSD(T). The RMS difference of harmonic fre-
quencies from CCSD(T) values are 46 cm−1 and 26 cm−1 for NH3 and PH3,
respectively.

5.6 Conclusions

In this chapter, we have studied the performances of a recently developed
molecular dynamics scheme based on quantum Monte Carlo. We have con-
sidered particularly simple systems by targeting the vibrational properties of
simple molecules, that are well studied and understood with well established
quantum chemistry methods. In this way we have been able to identify and
systematically control all possible sources of systematic error which may af-
fect this molecular dynamics. The main conclusion of this chapter is that the
statistical error (the finite number of samples NQMC used for each iteration
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name T(K) χ2
red type freq. (cm−1)

H2S A1 A1 B2

JHF nooptZ 1000 1.077 harm. 1248(5) 2774(6) 2789(6)
fund. 1217(4) 2652(4) 2656(7)

JHF 1000 1.018 harm. 1246(1) 2756(3) 2772(4)
fund. 1215(1) 2639(2) 2654(4)

JAGP 1000 1.049 harm. 1235(3) 2752(3) 2767(4)
fund. 1206(2) 2630(1) 2643(2)

CCSD(T) – – harm. 1206 2711 2727
Expt. – – – 1183.0 2615.0 2626.0
SO2 A1 A1 B2

JHF 800 1.024 harm. 570(4) 1214(8) 1441(11)
fund. 563(3) 1211(5) 1429(8)

JAGP 800 1.006 harm. 559(2) 1204(8) 1445(13)
fund. 557(2) 1193(7) 1426(10)

CCSD(T) – – harm. 506 1136 1332
Expt. – – – 517.7 1151.4 1361.8
NH3 A1 E A1 E
JHF 50 1.006 harm. 1064(3) 1712(4) 3523(8) 3651(5)

JAGP 50 1.021 harm. 1098(7) 1709(6) 3523(7) 3640(7)
CCSD(T) – – harm. 1159 1673 3476 3607

Expt. – – – 950.0 1627.0 3337.0 3444.0
PH3 A1 E A1 E
JHF 50 1.025 harm. 1048(6) 1181(3) 2445(8) 2461(13)

JAGP 50 1.022 harm. 1045(4) 1178(3) 2431(8) 2437(4)
CCSD(T) – – harm. 1018 1142 2412 2421

Expt. – – – 992.0 1118.0 2323.0 2328.0

Table 5.4: Vibrational frequencies of H2S, SO2, NH3 and PH3.

of MD) and the time discretization error due to finite τ can be easily pushed
to negligible values. On the other hand, we have found that the most diffi-
cult bias comes from the requirement to satisfy the BO constraint along the
dynamics. We have found that it is important to employ a sufficiently large
number nopt & 10 of energy optimization for each step of molecular dynamics,
in order to satisfactorily fulfill the BO constraint. Since the computational
time is proportional to nopt, in the present scheme this is probably the most
difficult bias to remove. Despite this difficulty, the calculation remains still
feasible and can be extended to large systems like the liquid water [105] which
will be discussed in the next chapter by using massively parallel supercom-
puters.

This work is also relevant to establish vibrational frequencies in complex
electronic systems. Among the three methods that we have used for evaluating
vibrational properties, the fitting method with samples generated by molecular
dynamics gives the best results for the same amount of computation cost.
Compared with the standard fitting procedure of ref. [96], it is easier and
more systematic to set up and use, and yields better distributions of the
configurations around the equilibrium structure, thus improving the quality
of fit as well as a geometry closer to the experiment. Even though our method
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based on the force-force correlations is the most direct and simplest approach,
it usually requires much more statistics. All methods, apart from the one
containing the anharmonic corrections, have favorable scaling with the system
size, and are in principle very promising because can be extended to large
systems, as well as generalized to the calculation of phonons in solids. However
we have seen that, in order to neglect anharmonic effects, we have to work with
so small temperatures that it is already very difficult to simulate a slightly
larger system (such as the water dimer). On the other hand, we expect that the
method which includes in the fit also the anharmonic corrections, should work
also for larger systems, despite the difficulty to represent the V4 term with a
number of parameters scaling with the fourth power of the number of atoms.
Also for this reason this method is very difficult to implement in practice for
large systems, and therefore we have limited our study to molecules containing
at most four atoms.

A very interesting feature that we have noted in the estimation of vi-
brational frequencies by QMC, is that the small frequencies are much less
biased by the systematic errors in our tests. This is really promising because
small frequencies are often more interesting as they characterize the inter-
molecular interactions, whereas the high frequency modes are determined by
the well understood intra-molecular properties. Moreover, we have system-
atically found that the use of the JAGP wave function in place of the more
commonly-adopted Jastrow-Slater paradigm, improves significantly the cal-
culation of both equilibrium structures and vibrational frequencies, basically
without extra computational effort.

As well known QMC scales very well with system size and, once the prob-
lem of including anharmonic effects will be solved at least in an approximate
way, say by self-consistent harmonic approximation [106], the computation
of vibrational frequencies in large systems will be possible with a reasonable
cost. In addition, we have shown that the present molecular dynamics can
be extended to large systems already at present [35, 105], provided the few
systematic errors are removed and especially the BO constraint are satisfied
in the way we have carefully described in this chapter.
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Chapter 6

Liquid water

6.1 Introduction

Water is one of the most important chemical substances on Earth. For its
crucial role in many biological, chemical and environmental processes, under-
standing its microscopic structure is an issue of long-standing interest. Though
it has been extensively studied for decades both at the theoretical and exper-
imental levels under a wide variety of conditions, its microscopic nature still
remains elusive. In 2005, the Science magazine included the problem “What
is the structure of water?” on the list of the 125 most important questions
[107] of modern science.

Water molecule is a polar molecule consisting of an oxygen and two hy-
drogen atoms. Since it has a large dipole moment, one might expect that
the interaction between water molecules will be dominated by electrostatics
and induction (polarization) with the dispersion interaction (van der Waals
(vdW) interaction) playing a minor role. In liquid water, a proton is exposed
to a high electronegative oxygen belonging to the next water monomer and
thus forms a so called hydrogen bond (HB) which is not a true bond but a
particularly strong dipole-dipole attraction. Water’s many anomalous prop-
erties, which arise from the unique hydrogen bonding pattern and long range
dispersion interaction, make it one of the most challenging liquids to model
theoretically and a complete understanding of its structure and dynamics is
still lacking.

Complementary to experiments, computer simulations have shown its
power in quantitative characterizations and advancing qualitative understand-
ings of water at ambient and extreme conditions. As was mentioned in the
thesis introduction that a compromise between simulation scale and accuracy
is always present, various theoretical descriptions of liquid water are employed
for different target problems. For example, in order to demonstrate the pro-
cess of protein folding in the water solution, tens of thousands up to millions
of water molecules should be simultaneously simulated for a very long pe-
riod of time. Nowadays, such simulations are accessible only with force fields,
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given a reasonable computational cost. Well-established empirical force fields
based on two-body interactions are able to reproduce properties of water in
a wide range of pressures and temperatures. However, many of them are
parametrized against experimental data or ab initio simulations [108], which
raises the question of their predictive power for situations different from those
experiments used by the parametrization. Moreover, since the many-body
interactions are represented effectively by altering the two-body interaction, a
direct physical interpretation of the liquid water at the molecular level is not
straightforward. Those cooperative effects can be included to a certain extent
by parametrizing many-body potentials against ab initio potential energy sur-
faces of small water clusters, but the inability to describe reactions remains
and such parametrization substantially increases the difficulty of fitting, as
well as the computational cost for many-body interactions.

In order to avoid the intrinsic drawbacks of force fields, ab initio approaches
like DFT are also used to perform molecular dynamics simulation of liquid
water. Nowadays, DFT-based MD simulations are routinely used to study
several properties of condensed matter systems at ambient conditions up to
extremely high pressures and temperatures [59, 60, 61, 62, 63, 64, 65, 66, 67],
and represent a quite reliable tool to predict new materials, sometimes more
effective or at least much cheaper than experiments. The first ab initio sim-
ulations of liquid water were attempted [109, 110] just a few years after the
invention of Car-Parrinello molecular dynamics [58] (CPMD). Apart from the
first excitement, it was soon clear that this substance was not so easy to
understand with computer simulations. The oxygen-oxygen (O-O) radial dis-
tribution function (RDF), as far as the positions of the peaks were concerned,
showed a pretty good agreement with the experiments available at that time
but the overall shape given by the simulation was very overstructured. Af-
ter these first attempts, many other standard DFT-based simulations have
been reported, but they still lack a satisfactory agreement with the experi-
ments. The equilibrium density given by simulations at ambient pressure (1
atm ∼ 10−4 GPa) is far from the expected 1 g/cm3 and the simulated diffusion
is one order of magnitude slower than those expected by experiments [111].
Moreover, it was shown that the evaluation of properties of liquid water in a
periodic box of 32 molecules are affected by small but not negligible size ef-
fects [112, 113] and the structural properties [112, 114] are biased by too large
values of the fictitious electronic mass in CPMD. Last but not the least, the
solidification of water occurs at a temperature which is unrealistically large
(∼ 410 K), so that all the present DFT simulations of liquid water should be
considered supercooled metastable phases [111, 115].

The DFT evaluations appear to be influenced not only by the choice of the
functionals [113, 65], but also, within a given functional, by other setups of
the calculations such as the pseudo-potential [111] and the basis set [116, 117].
The mostly used functionals for liquid water are those based on the generalized
gradient approximation (GGA) to DFT (often PBE or BLYP density function-
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als), yielding an over-structured water at ambient conditions. The accurate
description of the exchange by using the computationally-more-expensive hy-
brid functionals was shown to improve only slightly the results [118, 119],
probably due to their poor description of the long-range interaction forces.
On the other hand, in order to overcome the well-known difficulty of DFT
in describing long range interaction forces, the inclusion of empirical disper-
sion terms has been attempted either by using empirical pairwise interatomic
potentials of the C6R

−6 form in the total energy [120, 121], or by adopt-
ing dispersion-corrected atom-centered potentials [122]. Even though these
methods depend on external tunable parameters, all of them have provided
improvements in some cases [123, 124, 125, 126, 127, 128] and are strongly
dependent of the functional. Another way to improve DFT functionals is to
add corrections obtained by performing many calculations of different config-
urations with accurate approaches like QMC or post-Hartree-Fock methods
and then fitting the parameters with those results through machine-learning
[129, 130]. Its application on the liquid water shows a significant improvement
[131]. Finally, quantum effects have been shown to have an important role, as
they lead to a more accurate description of the hydrogen-bond, improving the
agreement with experimental data [132, 133, 134, 135, 136, 137] by broadening
the RDF. Most of these achievements are very promising, but at this stage it
is difficult to understand whether these improvements, mostly sacrificing the
ab-initio approach, have a real predictive power.

A recent accurate experiment of X-ray diffraction [138] has raised again
the reliability issue of present ab-initio molecular dynamics schemes, as it was
found that, surprisingly, the position of the first peak was shifted towards
larger distances. This observation is in excellent agreement with a recent
extensive and independent review on the experimental structure of bulk water
[139]. Indeed in ref. [139] a new methodology to interpret the experimental
data is employed and the shifts of the intermolecular O-O, O-H and H-H peaks
positions with respect to the old experimental references [140] are reported.
These results are particularly embarrassing for ab-initio simulation because,
the use of the PBE functional — until recently one of the most popular in this
field — is being now questioned in favor of different functionals, like BLYP
or B3LYP, that look clearly closer to present experiments [113], but less ab-
initio from some point of view as their expression of the correlation energy
is not universal and depends indeed on the external electron-ion potential,
namely semi-empirical. In other words, we believe that, in order to make
some progress for clarifying the present discrepancies between experiments
and numerical simulations in this field, it is now timely to use a completely
different approach for the following reasons:

• DFT — within its practical implementation with approximate function-
als — is not systematically improvable, and cannot be validated by a
variational principle as in the wave-function based approach. In particu-
lar it is not possible to judge the accuracy of a given functional without
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knowing the experimental result, thus DFT lacks most of the predic-
tive power of a usual wave function based approach. In our opinion
this drawback is particularly limiting the present ab-initio functionals,
because we believe that the main task of computer simulations should
be also to predict the properties of materials when experiments are not
possible (e.g. at very large pressures) and not only to reproduce them,
with an appropriate and somehow arbitrary choice of the functional.

• the computing performances, especially in massively parallel architec-
tures, are constantly growing with an impressive speed, as an exascale
(1018 flops) supercomputer is expected much before 2020, and supercom-
puter architectures are becoming more and more suitable for statistical
techniques rather than for deterministic methods such as DFT. Thus a
wave function approach based on QMC is now becoming practical and
competitive with DFT.

In this chapter we have employed the first ab-initio molecular dynamics
simulation within a fully wave-function approach based on quantum Monte
Carlo. We adopt the Born-Oppenheimer approximation, neglect the quantum
effects on protons, and use the less accurate QMC approach — the variational
Monte Carlo (VMC) — by means of a Jastrow Slater many-body wave func-
tion, to deal in the simplest way with the exact exchange and the electron
correlation. Despite all the above approximations, a significant improvement
in the description of liquid water has been achieved. In particular we have
obtained that the O-O RDF, gOO(r), is considerably less structured compared
with DFT calculations of the same type (with no proton quantum effects).
Moreover, it is also worth to emphasize that the position of the first peak is
now in perfect agreement with the most recent and accurate experiments, a
fact that was indeed found with a simulation dated before the new experi-
mental data were distributed [141].

In this chapter, we first studied the basic setups of our simulation includ-
ing wavefunction and MD simulation details in section 6.2. Then in section
6.3, we discussed the RDFs of liquid water in which the peak positions show
perfect agreement with the experiments. In the following sections 6.4 and 6.5,
the many-body interaction nature of the liquid water was displayed and the
hydrogen bond related properties were analyzed within our VMC molecular
dynamics simulation. Finally, in section 6.6, the discussion and conclusion are
drawn.

6.2 Simulation specifications

In this section we first specify the wavefunction ansatz chosen for character-
izing liquid water and then justify the basis set choice which is a compromise
between accuracy and computational cost. In the last part, the setups of our
MD simulation will be explained.
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Figure 6.1: The geometry of the water dimer in its equilibrium configuration.

The many-body wavefunction function of the liquid water in our simulation
is expressed by means of the following Jastrow Slater ansatz

Ψ(r) = ΨSD(r)J(r) . (6.1)

similar to (3.1) which has an antisymmetric part now represented by a Slater
determinant. The molecular orbitals which appear in the Slater determinant
are expanded in a local atomic basis of the Gaussian/Slater type ((5s,4p,1d)
contracted with 5 hybrid orbitals (introduced in section 3.3) on the oxygen
and (3s,1p) contracted with 3 hybrid orbitals on the hydrogen). The two core
electrons of the oxygen atoms have been described using the scalar-relativistic
energy consistent pseudo-potential of Burkatzki et al. [100]. The Jastrow
factor J(r) (see section 3.5) consists of one-body, two-body and three-body
terms only. The four-body terms are all excluded in order the save the number
of parameters optimized during the simulation. The three body Jastrow is also
expanded on an atomic basis set of Gaussian/Slater type with (3s,2p) on the
oxygen and (2s,2p) on the hydrogen (no contraction used for the Jastrow).
All the parameters except the exponents of the atomic orbitals are optimized
with VMC energy minimization described in section 2.4.

In order to show the quality of the wavefunction ansatz and the accuracy
of the chosen basis set, we have considered the water dimer, the simplest
compound which owns the O-H hydrogen bond, as our benchmark system. In
figure 6.2, the dissociation energy curve is faithfully reproduced, especially in
the region of interest (∼3 Å). The binding energy is not far from the experi-
mental value (∼5.0 Kcal/mol [142, 143]) and comparable with state-of-the-art
post Hartree-Fock calculations (5.02 Kcal/mol for CCSD(T) [144, 145] ). If
the so called lattice regularized Diffusion Monte Carlo [11] (LRDMC) method
is employed, this accuracy is further improved and the binding energy coin-
cides with the best known theoretical results. LRDMC guarantees the full
variational upper bound energy even in the case that pseudo-potentials are
used [12].

In principle a more accurate MD simulation is possible with larger basis
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set and LRDMC, but at present the computer resources required for such a
simulation with tens of molecules remains out of reach. We’d like to remark
here that, in molecular dynamics, the total energy is not important because
what really matters is the relative forces between a couple of atoms, namely
it suffices to compute accurate energy derivatives of the binding energy rather
than the energy itself. As it can be seen in the inset of figure 6.2, by align-
ing the binding energy curve at their minimum (this shift doesn’t affect its
derivative), we obtain a rather good description of the binding shape in the
region of interest 2 < R < 3.2 with an acceptable error out of this region.

After establishing the wavefunction, the other details of our MD simu-
lation are specified as follows. We apply the molecular dynamics driven by
forces evaluated by quantum Monte Carlo shown in chapter 4. This MD
scheme was introduced recently for the simulation of liquid hydrogen at high
pressures [35] and systematically validated through the calculation of vibra-
tional frequencies of small molecules [146]. We have performed a simulation
of 32 waters at 300K (∼310K, the measured temperature) in the canonical
ensemble (NVT) at experimental density 1 g/cm3, thus in a cubic cell with
box side L = 9.86 Å and periodic boundary condition (PBC). Since the value
of the mass is immaterial for static equilibrium properties, we have chosen the
hydrogen mass equal to the oxygen one, and we have collected about 5000
iterations (that we can estimate to roughly correspond to more than 40 ps of
simulation in a standard Newtonian MD simulation). At each iteration we
optimize all variational parameters with 9 steps of efficient energy optimiza-
tions based on the SRH-SNF optimization scheme described in section 2.4
with 250 significant parameters in each iteration. At each optimization step,
by applying the locality approximation (LA) (see section 3.3) with a cutoff
RMAX = 2.38 Å,1 the total number of variational parameters decreases from
∼70000 to ∼12000, a huge reduction, without losing much accuracy (less than
0.1 mHa per water molecule). We have done several tests by further optimiz-
ing the wavefunction after 9 initial steps during the dynamics. The negligible
energy, less than 0.1 mH per atom, gained by the extra optimization confirms
that it is possible with this scheme to correctly follow the Born-Oppenheimer
energy surface, namely the variational wave function remains at the minimum
possible energy during the time evolution of the atomic positions.

In our simulation, we have started the simulation by using equilibrated
configurations generated by DFT molecular dynamics with BLYP functional.

6.3 Radial distribution function

In statistical mechanics, the radial distribution function (RDF), also called
pair correlation function, g(r) in a system consisting of particles (atoms,

1This distance corresponds to the position of second valley in O-H RDF, namely all the
hydrogen bond (second peak) are within this range.
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Figure 6.2: Dissociation energy of the water dimer, plotted as a function of
the oxygen-oxygen distance, studied with VMC (the small-basis is the one used
for the dynamics and the large basis is (9s,9p,3d,2f) contracted with 12 hybrid
orbitals on the oxygen and (7s,6p,2d) contracted with 4 hybrid orbitals on the
hydrogen for the determinant and (5s,4p,2d,1f) on the oxygen and (3s,2p,1d)
on the hydrogen for the Jastrow), and LRDMC (that alleviates the basis set
issue and is almost independent on the choice of the small or large basis).
For a comparison, we report also the dissociation curve for DFT/BLYP and
DFT/B3LYP, both with aug-cc-pVTZ basis set.

molecules, clusters, etc.), describes how density varies as a function of dis-
tance from a reference particle. This function is of fundamental importance
in thermodynamics because various macroscopic thermodynamic quantities
can usually be determined from g(r).

The RDFs of liquid water obtained from our VMC-based and DFT/BLYP
molecular dynamics simulation are reported in figure 6.3, in comparison with
experimental results. Even though the BLYP functional describes the water
dimer (the simplest system displaying the hydrogen bond) with a reasonable
accuracy, comparable with the one obtained by our QMC scheme, as discussed
in section 6.2, the peak positions and shapes of the RDFs are substantially
different on the target 32 water system. Moreover we have verified that, within
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this Langevin scheme, the correlation time estimated by the convergence of
the RDF with much longer DFT calculations, is less than 2000 iterations, and
therefore we are confident that our liquid is well equilibrated and the results
are reliable. At variance with the Newtonian dynamics, our advanced method
is capable of accelerating the slow modes while not affecting the fast modes
by making use of the friction matrix (see section 4.5) and thus reduces a lot
the auto-correlation time.

We see in figure 6.3 that these first results are very encouraging. Despite
the noise, the outcome is very clear that the gOO(r) is much closer to exper-
iments than the corresponding DFT calculations. Not only the radial distri-
bution function is much less overstructured (first valley and second peak) but
also, as discussed in the introduction, the position of the first O-O peak is al-
most indistinguishable from the most recent experiments [138, 139] (ref. [139]
introduced a novel method for removing the inelastic scattering from neutron
data compared with the ref. [140]). The first peak of O-O RDF refers to all
the nearest neighbor oxygen pairs. Between those two oxygen atoms, there
are always an inner molecular O-H bond and an inter molecular O--H hydro-
gen bond which are represented by the first and second peaks of O-H RDFs.
Since the O-H--O angle is distributed around 167 ◦ (see figure 6.6), all three
atoms stay almost on a line. For this reason, the first peak position of the
O-O RDF should be affected by the first and second peak positions of the O-H
RDF. Indeed in the middle panel of figure 6.3, the second peak of the O-H
RDF given by VMC simulation shifts to the right side of the corresponding
DFT/BLYP peak while the first peaks of both O-H RDFs are very close. This
indicates that in the liquid water, the strength of the O--H hydrogen bond
has significant difference between DFT/BLYP and VMC. For the same reason,
the second peak of the H-H RDF given by VMC also stands at the right side
of the corresponding DFT/BLYP peak since it is the distance between the
hydrogen atom on a hydrogen bond and the hydrogen atoms belonging to the
water molecule whose oxygen participates the same hydrogen bond. It should
be noted that the peak positions of the RDFs of DFT/BLYP calculations are
always closer to the old experiment [140] while those given by VMC are closer
or almost identical to the new experiment [139].

The improvement of RDFs implies a characterization of liquid water in
VMC better than the usual DFT functionals due to a faithful description of
the electronic correlation. In fact in ref. [147], it had been shown that the posi-
tion of the first peak could be improved after better recovering the electronic
correlation by employing the simplest (MP2) post-Hartree-Fock technique.
Moreover, quantum effects should further improve the shapes of RDFs by
broadening and lowering the peaks without shifting their positions, as it was
shown before within DFT in ref. [132]. Despite this rather controversial fact
[137, 148], because of the lack of long enough ab-initio simulations equipped
with quantum effects, our results seem to support the claim made in ref. [132]
about the relevance of proton quantum corrections in water. Indeed our RDFs
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for classical protons remain sizably different from experiments, as far as the
broadening and the heights of the first peaks are concerned, especially for what
concerns the gOH(r) and gHH(r) radial distribution functions, where quantum
effects are expected to be much more important.

In order to avoid possible size effects we have studied the position of the
first peak with a much shorter simulation (∼600 steps, corresponding to about
5ps) with 64 molecules. Since our method equilibrates rather smoothly with
the length of the simulation, it is possible to obtain this information also for
the largest size by simple linear extrapolation. In this way we have found that
the position of the first peak in gOO(r) remains very close to the smaller 32
water molecule simulation, supporting the validity of our main finding.

6.4 Many water molecules’ interaction

Within our method, we have obtained considerably better results, not only
compared with the standard GGA functionals, such as BLYP and PBE. This
is remarkable, because, within our approximation, the two-water interaction
was basically dealt with the same degree of accuracy as the BLYP functional.
This implies that the accurate description of the many water energy surface,
and probably the long distance interactions — usually missed or incorporated
by hands at the DFT level — should be important to close the gap with
experiments.

In order to further support this issue we show in figure 6.4 the interaction
between two water monomers

(f iH2O − f
j
H2O) · (rOi

− rOj
)/|rOi

− rOj
| (6.2)

namely the repulsive force acting on the O-O axis, where the net molecular
force reads

fH2O = fH1 + fH2 + fO . (6.3)

This interaction described by VMC is quite different from the BLYP pre-
diction when two monomers are in the liquid water but almost the same in
the vacuum. In the dimer panel of figure 6.4, namely dimer in the vacuum,
even though DFT/B3LYP curve slightly differs (less than 4× 10−4 a.u.) from
the DFT/BLYP and VMC curves, the forces computed by all three methods
are almost the same, which indicates that two-water interaction described by
VMC has a similar level of accuracy as DFT which confirms our claim in sec-
tion 6.2 based on the fact that the energy derivatives are important instead
of the energy itself.

In figure 6.5, we show also the interaction between two ions A and B
(oxygen or hydrogen) defined similarly to eq. (6.2) as

(fA − fB) · (rA − rB)/|rA − rB| . (6.4)
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Figure 6.3: Radial distribution function obtained with 32 waters by a VMC-
based dynamics in NVT ensemble (see text) as compared with DFT/BLYP
and experiments (X-ray [138] or neutron diffraction [140, 139]) (a): Oxygen-
Oxygen, (b) Oxygen-Hydrogen, (c) Hydrogen-Hydrogen.

The almost negligible difference between DFT/BLYP simulations with 32 and
64 water molecules indicates that the finite size effect is quite small in our
DFT simulation. On the other hand, the curves of DFT/BLYP and VMC
show substantial differences in their description of the interaction.
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Figure 6.4: The net molecular force difference of a pair of water monomers
(i, j) projected on their oxygen-oxygen (O-O) direction (f iH2O−f

j
H2O) · (rOi

−
rOj

)/rOiOj
as a function of O-O distance rOiOj

where the net molecular force
fH2O = fH1 +fH2 +fO. The upper panel shows that in liquid water the VMC
and DFT/BLYP forces have sizable difference at short range below 3Å and
the difference between two DFT/BLYP calculations with 32 and 64 molecules
in the unit cell is negligible. The lower panel shows that in the water dimer
the two body behavior of VMC, DFT/BLYP and DFT/B3LYP results are
almost the same both at short and long distance.

6.5 Role of the Hydrogen bond

As mentioned in the introduction of this chapter, hydrogen bonds play the key
role for determining the structure of liquid water. It is always an unavoidable
topic when liquid water is studied by various methods like force fields [149]
and DFT calculations, especially when an improvement on the theoretical
description of the dispersion interaction between water molecules is achieved
[125, 127, 150]. Apart from ambient condition, it is also interesting to see how
the structure changes by looking through the redistribution of hydrogen bonds
when liquid water is under pressure [151]. Moreover when the nuclear quan-
tum effects are taken into account, the behavior of hydrogen bonds changes
dramatically due to the enhanced proton mobility and tunneling by the zero
point motion [132, 136, 137].

We’ve measured the hydrogen bonds in our VMC simulation and they
are identified in the following way. Since the hydrogen bonds exist only in
the O-H--O structure displayed in figure 6.1. They are filtered out first by
choosing oxygen atoms within a distance cutoff (3.32 Å) right at the position
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Figure 6.5: The atomic force difference between atom i and atom j projected
on their direction (fi − fj) · (ri − rj)/ri,j as a function of their distance rij
for H-H (upper panel), O-H (middle panel) and O-O (lower panel) pairs in
the liquid water. All three panels show that the VMC and DFT/BLYP forces
have sizable difference at short range below 3Å and the difference between
two BLYP calculations with 32 and 64 molecules in the unit cell is negligible.

of the first valley in O-O RDF. In the second step, the hydrogen (see Hd in
figure 6.1) between the two oxygen in a O-H--O structure is selected as the one
which provides the largest O-H--O angle among all the four hydrogen atoms
belonging to these two oxygen atoms. In the last step, not all the H--O in the
O-H--O structure are considered as hydrogen bonds but only those with their
O-H--O angle larger than 140◦ are valid as ref. [151] did.

84



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 140  145  150  155  160  165  170  175  180

D
e
n

s
it
y

O-H -- O angle (Deg.)

BLYP 64WAT
BLYP 32WAT
VMC 32WAT
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Figure 6.6 shows the distribution of O-H--O in liquid water simulated by 32
and 64 water molecules with DFT/BLYP and 32 water molecules with VMC.
Again, the curves given by DFT/BLYP simulations with 32 and 64 molecules
are indistinguishable and the VMC curve, even with a little flaw at the peak
due to limited statistics, almost coincide with the DFT/BLYP curves. This
further strengthen our claim that the improvement of VMC O-O RDF over
the DFT one is because of the change of the O--H hydrogen bond distance
and not the O-H--O angle. As a comparison, when the DFT is corrected with
empirical pair-wise potentials in order to recover the dispersion interaction,
the O-H--O angle shows a significant change [124]. Our results question the
validity of those methods.

We’ve also measured the distribution of proton-transfer coordinate ν, pro-
posed in ref. [137], defined as

ν = d(Od-Hd)− d(Oa-Hd) , (6.5)

which the difference between the intra-molecular O-H distance d(O-H) and
the inter-molecular O-H distance d(O--H) in an O-H--O structure. During our
classical-ions simulation with VMC, we have not observed an auto-protolysis
event (see figure 6.7). According to ref. [137] when the nuclear quantum
correction is applied, liquid water shows a significant auto-protolysis events,
namely positive ν. The fact that we haven’t observed such proton-transfer
indicates the nuclear quantum nature is clearly missing in our simulation.
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Figure 6.7: Distribution of the proton-transfer coordinate in ab initio dynam-
ics of liquid water at 300k. This coordinate is defined as ν = d(Od-Hd) −
d(Oa-Hd) on two water molecules connected by a hydrogen bond (see fig-
ure 6.1). We haven’t observed one event that ν > 0, namely no transfer
among ∼ 1.8× 106 and ∼ 3.6× 105 hydrogen bonds in BLYP and VMC.

6.6 Discussion and conclusion

The first ab-initio simulation of liquid water by quantum Monte Carlo has
been performed and yields so much excitement for us. The results show that
several issues of ab-initio molecular dynamics, mainly DFT-based, can be
solved within the present powerful approach. This opens a new frontier in
the simulation of water because several questions about the mystery of water
which are also difficult to answer by experiments could be solved with better
accuracy by quantum Monte Carlo in the near future, especially by means of
massively parallel supercomputers.

We have adopted the most simple quantum Monte Carlo method (the
VMC) in a fully consistent and controlled way. Despite the roughness of
this first attempt (as compared with the most recent DFT calculations), our
study highlights a few clear results and also several perspectives described in
the following.

The calculation by QMC is rather heavy, but possible, and there is room
for considerable improvements along this fully ab-initio scheme. For instance
it could be possible to work with a larger but more accurate basis with only
a few times more computer resources, as our algorithm scales linearly with
the basis dimension. Also we can add the four-body Jastrow which explicitly
describes the dipole-dipole interaction to further improve the description of
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liquid water. If even more computing power could be provided, projection
methods like LRDMC would push higher accuracy on the evaluation of energy
and forces, yielding better results.

Our agreement with experiments is rather satisfactory, and could be an
excellent agreement if a larger system (64 waters could be sufficient) and
nuclear quantum corrections, not included in this study, would be considered.
In a DFT dynamics with 32 waters, the height of the first peak gMAX

OO =
gOO(rMAX) is expected to be overestimated by ∼ 0.3 [112, 113] with respect
to the converged value. If we assume that also QMC has similar size effects,
the agreement with the experimental value should be substantially improved.
Moreover, nuclear quantum corrections appear to further broaden the first
peak and reduce its height by about ∼ 0.4 (∼ 0.24) if we consider as reference
the path integral CPMD calculation reported in ref. [132] (ref. [148]). We
can also probably capture substantial auto-protolysis events. Therefore, in
future studies, by taking into account size and nuclear quantum effects, it
may be possible to have a fully consistent ab-initio description of liquid water
by QMC.

We finally remark that, thanks to good scaling properties of QMC al-
gorithms with the system size and fast evolving supercomputers, this work
opens promising perspectives for future application of such high-level ab ini-
tio molecular dynamics technique for the study of thermodynamic properties
of complex clusters and liquids.
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Chapter 7

Conclusion

In this thesis, the previously introduced molecular dynamics simulation with
quantum Monte Carlo [47] is investigated and developed through meticulous
and in-depth studies. Indeed this new advanced tool is becoming mature
during these years [35, 146, 105].

The first part of this thesis introduces the basic knowledge of variational
Monte Carlo and a wide range of optimization methods for the wavefunction
within the framework of VMC. By applying all these methods on our test case
Be2, their performances are well displayed and their features are discussed.
This part lays the foundation of the molecular dynamics since wavefunction
optimization is intensively employed in order to fulfill the Born-Oppenheimer
approximation when ions are moving during the molecular dynamics.

The first part also introduces the wavefunction ansatz chosen for charac-
terizing the systems of interest. A good wavefunction should be accurate and
should be evaluated efficiently. By assembling Jastrow factor and AGP rep-
resented by atomic hybrid orbitals and molecular orbitals, our wavefunction
reaches a perfect balance between accuracy and compactness. In addition,
through again Be2 we see the importance of the four-body Jastrow in cases
when the van der Waals interaction is particularly important.

In the second part, since we’ve already been equipped with efficient opti-
mization methods and a good wavefunction, the ab initio molecular dynamics
scheme with quantum Monte Carlo is proposed after introducing the methods
for the accurate and efficient evaluation of forces [50]. In order to improve
the accuracy and stability of this scheme, a better integration scheme is de-
vised [146]. Now large time steps are allowed without losing accuracy, thus
significantly reducing the number of steps during the equilibration. This part
highlights the peculiar features of the covariance matrix of the forces which
can be defined only within QMC and not in any other deterministic approach
like DFT. It can be used to fine-tune the speeds of slow and fast modes of the
dynamics and thus accelerate the simulation.

After that, our molecular dynamics scheme was validated by benchmark-
ing calculations of the vibrational frequencies [146]. The calculations of the

88



frequencies of water and other small molecules show that many systematic
biases in our MD scheme and QMC evaluation can be controlled and this fur-
ther confirms the robustness of our MD scheme. We are now more confident
to push this method forward to applications on large systems.

Since all the preparations are well done, it’s time to hunt monsters. In the
last chapter of the second part, the liquid water is simulated with our ab initio
molecular dynamics [105]. The results are encouraging since we’ve obtained
RDFs with peak positions almost identical to the most recent experiments
and the shapes are much less structured than previous DFT-based ab initio
simulations even if the two water molecule interaction is dealt with the same
level of accuracy as the DFT/BLYP calculation. We have also studied the
hydrogen bonds in the liquid water we have simulated.

Thanks to this advanced simulation tool, we’ve seen so much surprise and
obtained a lot of encouraging results. However, there are still questions to
be answered and improvements to be done. Here are the considerations of
further improvements and applications

a) The advantages of the molecular dynamics scheme, using large time step
and speeding up slow modes, introduced in this thesis rely on the force
covariance matrix which has been empirically shown to be proportional
to the dynamical matrix. Further theoretical studies are required to
investigate how and why those two matrices are related. If we could
extract the dynamical matrix from the force covariance matrix, we can
get the vibrational modes and frequencies directly.

b) The vibrational frequencies of larger systems like water dimer are worth
trying by our fitting method with molecular dynamics involved, espe-
cially if the anharmonic effects can be considered.

c) As for the simulation of liquid water, there is room for considerable
improvements. On one hand, within our current ab initio scheme, it
could be possible to work with a larger but more accurate basis set at a
reasonable amount of extra cost. We could also add back the four-body
Jastrow to have a better wavefunction ansatz to characterize the liquid
water. On the other hand, we could compute forces with more advanced,
however more costly, QMC techniques like LRDMC. In addition, longer
simulations with larger system sizes (at least 64 molecules) could also
reduce the finite size bias systematically.

d) We’ve seen from the simulation of liquid water that our simulation,
even with substantial improvements, is still not exact compared with
experiments. One key fact is that we have missed the quantum feature
of ions which is required for a faithful description of liquid water. Further
studies are necessary to describe ions within a fully consistent quantum
mechanical approach.
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Apart from a), all the other three points demand more computational
resources. Actually, our simulation of liquid water has already hit the petas-
cale performance. As the most powerful supercomputer on the Top500 list
of high performance computer (HPC) now has already reached a measured
performance of ∼ 34 petaflops and the overall performance of supercomputers
are growing at a rapid and steady speed, those improvements could be made
possible in the very near future. In addition, the point d) also requires the
implementation of new algorithms by employing path integral techniques.

However, there’s another technical challenge that a big amount of work is
required to adapt current programs to the new hardware architectures of su-
percomputers. The so called ‘Distributed memory’ era which mainly involves
MPI1 has passed and the ‘Many core’ era starts [152]. In this new era, the
most heavy calculations are no longer carried by CPU but mainly by accel-
erators like GPU or MIC which integrate a huge number of compute units
operating at lower frequency in order to perform with a much higher energy
efficiency. This transition has been clearly shown in the most recent Top500
list announced in June 2014 that 4/10 of the top ten computers have already
been equipped with accelerators. In order to achieve their decent performance,
the current programming model needs to be revised. Fortunately, the new era
is very promising for us since the new architectures favor statistical methods
like quantum Monte Carlo rather than deterministic methods like DFT.

In conclusion, it is time to press the button to launch wide applications
of the promising ab initio molecular dynamics by quantum Monte Carlo like
what the DFT-based approach did two decades ago. I hope to see QMC
continue expanding its territory in the following decades.

1MPI stands for ‘Message Passing Interface’.

90



Appendix A

Solutions to the second order
Langevin dynamics

A.1 Integration of second order Langevin

equations

In this appendix we sketch how to integrate exactly the differential eq. (4.16):

v̇(s) = −γ(R) · v(s) + f(R) + η(s) (A.1)

in an arbitrary interval t̄ ≤ s ≤ t within the assumption that the vector R is
not changing much during the integration interval and that therefore it can
be considered independent of s. In this appendix, in order to avoid confusion,
we indicate by s the generic time defining the SLD dynamics, whereas with
t̄ and t, the initial and final time of the integration, respectively, so that the
initial condition reads:

v(t̄) = v̄ . (A.2)

As well known this kind of equations can be solved in terms of the simple ex-
ponential solution v(s) = exp [γ(R)(t̄− s)] v̄, valid in absence of the external
force and the noise (i.e. f(R) + η(s) = 0). We search therefore a solution of
the form:

v(s) = exp [−γ(R)s]y(s) . (A.3)

By replacing the above equation in eq. (A.1) we easily obtain that:

ẏ(s) = exp [γ(R)s] [f(R) + η(s)] (A.4)

with the initial condition given by inverting eq. (A.3) for s = t̄:

y(t̄) = exp [γ(R)t̄] v̄ . (A.5)

Eq. (A.4) can be integrated immediately from t̄ to t, because its RHS is a
known function of s:

y(s) = y(t̄) +

s∫
t̄

exp [γ(R)t′] [f(R) + η(t′)] dt′ . (A.6)
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We now go back to the original ansatz (eq. (A.3)), and by replacing the initial
condition (eq. (A.5)) in the above equation, we obtain the final solution:

v(t) = exp [γ(R)(t̄− t)]v(t̄)

+

t∫
t̄

exp [γ(R)(t′ − t)] [f(R) + η(t′)] dt′ . (A.7)

A.2 Better integration scheme

In this appendix we describe how to avoid the approximation in eq. (4.23)
to integrate eq. (4.17), with a more involved method, that was already intro-
duced in ref. [35]. However we have noted that in the proposed integrator
it is not necessary to compute the velocities at half-integer times because we
perform the integration of eq. (4.17) in an exact unbiased way. In the follow-
ing we describe this derivation and obtain expressions very similar to the ones
introduced in ref. [35], with the main difference that here we use integer time
both for velocities and positions:

vn ≡ v(tn) (A.8)

Rn ≡ R(tn) . (A.9)

Having the general expression of the velocity by eq. (A.7), we can use to
integrate eqs. (4.16) and (4.17) in the interval tn ≤ s ≤ tn+1 and obtain,
with a little involved algebra, just a bit more than the original scheme [47]
described in section 4.4:

vn+1 = e−γnτvn + Γn · (fn + η̃) (A.10)

Rn+1 = Rn + Γn · vn + Θn · (fn + ˜̃η) (A.11)

where we have introduced the following matrices, mainly to single out, as
before, the actual noisy terms η̃ and ˜̃η, that have to be added to the force
components in the above Markov iterations for the velocities and coordinates,
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respectively:

Γn = γ−1
n (I− e−γnτ ) (A.12)

Θn = γ−1
n (τI− Γn) , (A.13)

η̃ = Γ−1
n e−γnτ

tn+1∫
tn

eγn(t−tn)η(t) dt

= Γ−1
n e−γnτ

τ∫
0

eγntη(t) dt , (A.14)

˜̃η = Θ−1
n

tn+1∫
tn

dt

t∫
tn

dt′eγn(t′−t)η(t′)

= Θ−1
n

τ∫
0

dte−γnt
t∫

0

dt′eγnt
′
η(t′) . (A.15)

In order to define the Markov process, it is enough to compute the corre-
lation of the previously mentioned noisy terms, which we define as follows:

〈η̃iη̃j〉 ≡ ᾱ1,1
ij (A.16)〈

˜̃ηi˜̃ηj

〉
≡ ᾱ2,2

ij (A.17)〈
η̃i˜̃ηj

〉
≡ ᾱ1,2

ij (A.18)〈
˜̃ηiη̃j

〉
≡ ᾱ2,1

ij = ᾱ1,2
ij . (A.19)

Then a straightforward integration in time, by using that the assumed
correlation is given by eq. (4.18) and that, by eq. (4.19) the corresponding
matrix ᾱ = 2Tγ, we obtain:

ᾱ1,1 = Tγ2
n coth(γnτ/2)

ᾱ2,2 = T (2Θn − Γ2
n) ·Θ−2

n

ᾱ1,2 = TγnΓn ·Θ−1
n .

The above Markov process can be straightforwardly implemented, as well as
the very similar one described in ref. [35]. However we have tested that all
methods, including the simplest one described in section 4.4, behave equally
well, with comparable performances, probably because a too high accurate
integration scheme is not necessary for the available accuracy, possible at
present with QMC.

As discussed also in ref. [47] (see also section 5.2.3), all the QMC force
evaluations f are affected by an intrinsic stochastic noise, which usually de-
termines an effective temperature higher than the target one. This problem
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can be avoided, by generalizing the method of the noise correction described
in section 4.4 to this specific case. Indeed we can follow the correct dynamics
by adding to the QMC noise of the forces the two external noises η̃ext and ˜̃ηext

so that the total noises η̃ and ˜̃η satisfy the correct expressions in eqs. (A.16)
to (A.19). In this way, we have to subtract the 3N × 3N QMC correlation of
the forces αQMC to each of the four sub-matrices, namely

ᾱa,bext = ᾱa,b −αQMC , (A.20)

is the true external noise we have to add to the system, to take into account
that QMC forces contain already a correlated noise, that is independently
evaluated during the dynamics. It can be shown that the resulting matrix
ᾱext is indeed positive definite provided ∆0 is large enough, so that ᾱext is a
well defined correlation for an external noise.
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Appendix B

Efficient calculation of Ŝ2

In this appendix we describe how to compute the expectation value of the
total spin square Ŝ2 over the variational wavefunction ΨJAGP in the paired
AGP case, namely with vanishing spin projection Sz along the z-axis and N
electrons [55].

As is well known, within VMC, we need to compute the so called local
estimator of the spin square:

〈x|Ŝ2|Ψ〉
〈x|Ψ〉

where x = {r↑1, . . . , r
↑
N/2, r

↓
1, . . . , r

↓
N/2} is a many body configuration where

the electron positions and the spin projection along the z-axis σi = ±1/2 are
defined. The application of Ŝ2 to a given configuration can be written as:

Ŝ2|x〉 = S2
z |x〉+

1

2

∑
ri,rj

(S+
ri
S−rj + h.c.)|x〉 (B.1)

where i and j label all electron positions, regardless of their spins. The above
expression can be recast in the following way:

Ŝ2|x〉 = −
N/2∑
k,l

|xkl〉+
N

2
|x〉 (B.2)

which generates (N/2)2 new configurations

|xkl〉 = −S−
r↑k
S+

r↓l
|x〉 (k, l = 1, . . . , N/2) (B.3)

where k(l) labels only the spin-up(down) electrons, namely the new configu-
ration xkl is obtained by swapping the positions of the (k,l) electron pair with
opposite spins. The minus sign in the above expression takes into account
the Fermi statistics, in order to recast a spin-flip with a position exchange.
Similarly the rightmost term in eq. (B.2) takes into account the local term
i = j in eq. (B.1), which is obtained by applying the spin-flip operator to each
individual electron, leading to a trivial constant (N/2) times |x〉.
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Therefore, the main problem is to compute the (N/2)2 wavefunction ratios:

rkl =
〈xkl|Ψ〉
〈x|Ψ〉

=
detA′

detA

J ′

J
(B.4)

Aij = G(r↑i , r
↓
j ) (B.5)

which contain a determinant factor and a Jastrow factor.

B.1 Determinant part

For the determinant factor, the swapping of the (k, l) electron pair implies a
change in the determinant A→ A′ given by:

A′ij = Aij + δik[G(r↓l , r
↓
j )− G(r↑k, r

↓
j )] + δjl[G(r↑i , r

↑
k)− G(r↑i , r

↓
l )]

+ δikδjlθkl

θkl = [G(r↓l , r
↑
k) + G(r↑k, r

↓
l ) − G(r↓l , r

↓
l )− G(r↑k, r

↑
k)]

We rewrite A′ as

A′ = A(I + ∆)

∆ij = A−1
ik Wj + δjlUi

Wj = G(r↓l , r
↓
j )− G(r↑k, r

↓
j )

Ui = B↑,↑i,k −B
↑,↓
i,l +A−1

ik θkl

where we have defined the B↑,σ matrices as follows:

B↑,σi,j =
∑
z

A−1
iz G(r↑z , r

σ
j ) (B.6)

Notice that these matrices can be computed only once for all spin flip ratios,
amounting to 2(N/2)3 operations.

Then, by employing the Sherman-Morrison algebra, the ratio of the two
determinants detA′/ detA is given by a determinant of a much simpler 2× 2
matrix M :

M =

(
1 +

∑
iA
−1
ik Wi A−1

lk∑
i UiWi 1 + Ul

)
(B.7)

In this way, the number of operations necessary to obtain all the (N/2)2 ra-
tios scales as N3 namely, with a computational time similar to the calculation
of the energy.
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B.2 Jastrow part

If the wavefunction is defined in terms of a spin dependent Jastrow, the total
Jastrow factor can be generally written as

J = exp

(
N∑
i<j

V (i, j)

)
(B.8)

where the summation over i and j are now over all the electrons, regardless
of their spins, and V is defined as

V (i, j) = V2B(i, j) + 4σiσjV34B-Sz(i, j) (B.9)

V2B(i, j) =
1

2
[V‖(i, j)(1 + 4σiσj) + V⊥(i, j)(1− 4σiσj)] (B.10)

where V2B is the two-body Jastrow consisting of spin parallel V‖ and spin anti-
parallel V‖, and V34B-Sz is the three- and four- body spin Jastrow. The spin
dependent part of V is rewritten as Vsd(i, j)σiσj, Vsd(i, j) = 2(V‖−V⊥)+V34B-Sz.
Each time we swap the electron k with spin up and the electron l with spin
down, we only need to flip the corresponding spins σk and σl in eq. (B.9). It is
clear therefore that, by computing the auxiliary vector V̄ (l) =

∑
i 6=l Vsd(i, l)σi

once for all, all the Jastrow ratios J ′/J can be easily computed as

J ′

J
= exp

{[
V̄ (l)− Vsd(k, l)/2

]
−
[
V̄ (k) + Vsd(l, k)/2

]}
,

namely also this with an irrelevant number of operations ( ' N2 operations).
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List of abbreviations

HF Hartree Fock
SD Slater Determinant

AGP Antisymmetrized Geminal Power
JHF Jastrow correlated Hartree Fock wavefunction
JSD Jastrow correlated Slater Determinant wavefunction

JAGP Jastrow correlated AGP wavefunction
STO Slater Type Orbital
GTO Gaussian Type Orbital
MO Molecular Orbitals
LA Locality Approximation
SR Stochastic Reconfiguration

CCSD Coupled Cluster Single and Double excitation
DFT Density Functional Theory

QMC Quantum Monte Carlo
VMC Variational Monte Carlo
DMC Diffusion Monte Carlo

LRDMC Lattice Regularized Diffusion Monte Carlo
BO Born-Oppenheimer
MD Molecular Dyanmics

CPMD Car-Parrinello Molecular Dyanmics
LD Langevin Dyanmics

SLD Second order Langevin Dyanmics
RDF Radial Distribution Function
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