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Chapter 1
Introduction

Computer simulations of matter are the modern realizations of a very old idea in science,

namely that the evolution of a system can be computed exactly given the set of starting

conditions and the forces of interaction[1]. Moreover, numerical simulations have a central

role in testing models and theoretical predictions as they may be directly compared with real

experiments. These numerical experiments may also replace their real-life counterparts if

one wants to study materials under extreme conditions.

Molecular dynamics (MD) is a class of computer simulations in which the motion of

interacting particles is integrated numerically given the forces that act between them, and

therefore is a powerful tool to predict properties of materials. In the so-called classical molec-

ular dynamics, the forces between the particles are defined through empirical force fields.

This approach is particularly cheap from the computational point of view, and very large

systems can be simulated. The electrons are integrated out from the system and they are

replaced by effective ionic force fields, which are determined in advance. However, in atom-

istic simulations, classical MD has a very limited predictive power as the electronic structure,

and thus the bonding pattern, changes qualitatively with the ionic configurations generated

along the simulation.

On the other hand, the so-called ab-initio molecular dynamics considers both ionic and

electronic degrees of freedom. The forces between the ions are evaluated at each step dur-

ing the dynamics, by computing the electronic structure, altough in approximate ways for

practical implementations. The Born-Oppenheimer approximation is implicitly understood,

where electrons are considered in their instantaneous ground state[2] while the nuclei can

be treated as classical particles moving in the field corresponding to the ground state elec-

tronic potential energy surface. The foundation of the ab-initio MD field can be traced back to

the pioneering work of Car & Parrinello[3], in the 1985, where for the first time, an ab-initio
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1. Introduction

electronic technique such as Density Functional Theory[4] was combined with MD. Clearly,

ab-initio MD is a much more computationally demanding technique, and the size of the sys-

tems that can be simulated are smaller compared to the classical MD case. Until very recently,

the Density Functional Theory (DFT) method has been considered the standard tool for the

atomistic simulation of materials, as it allows the simulation of many electrons with a rea-

sonable computational effort. DFT is in principle an exact theory, but in practical calculations

can be used only with approximations, namely the exchange-correlation contribution in the

functional is approximated[5], and the results are only as good as the approximation used.

Conversely, the heavy computational cost of more accurate, such as post Hartree-Fock tech-

niques, strongly limits the number of explicitly treated electrons. The quest for an efficient

ab-initio molecular dynamics technique is motivated by the need of describing accurately the

electronic correlation and, at the same time, treating a large number of atoms, thus allowing

a realistic prediction of thermodynamic properties even for complex materials.

Dense hydrogen is certainly one of these cases. Indeed extensive experimental as well as

theoretical efforts have been spent for about one century up to the present days, to under-

stand the high pressure phase diagram of hydrogen. In spite of seemingly a simple system to

study, hydrogen displays a very rich phase diagram, that in most cases, it is not completely

determined from an experimental point of view. At low pressures and temperatures, hy-

drogen crystallizes as a molecular solid and undergoes a number of phase transitions with

increasing density. Up to the present days, this material has been probed experimentally,

at low temperatures, up to the pressure of 360 GPa[6], and it always stays in the insulating

molecular phase. Monovalent elements like the alkali metals are not normally found in the

paired state because the cohesive energy of the metallic state is larger than the binding en-

ergy of the diatomic state. In hydrogen, the opposite happens. However, the monoatomic

state can be achieved by either high temperatures or high pressures. Its existence is not in

doubt, at least from a theoretical standpoint: at some sufficiently high density (and corre-

sponding pressure) a molecular state becomes impossible because the kinetic energy of a

localized wave function would exceed the bonding energy. Nevertheless, quantify precisely

this dissociation pressure is an extremely hard task.

In 1935, Wigner and Huntington proposed, for the first time, that a pressure of 25 GPa

would have been sufficient to break the molecules and create a monoatomic crystal[7]. More-

over, according to the band theory of solid, this compound would be a metal, due to the

half-filled conduction band. On the other hand, any indication of metallization or dissocia-

tion has not been observed in the room temperature solid phase yet [8, 9, 6]. At high tem-

peratures instead, experimental evidences for a insulator-to-metal (IM) transition have been

reported[10] in the range of 100-200 GPa and 2000-3000 K, altough a clear understanding of
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its underlying mechanism is still missing. Notice that, apart from its importance as a model

system, hydrogen is the most common substance in the universe and the understanding of

its equilibrium properties, when compressed, is crucial for a satisfactory description of many

astrophysical bodies. Indeed the experimentally observed IM transition occurs at pressures

and temperatures that are realized in the interior of giant planets such as Jupiter and Saturn.

Performing experiments under these extreme conditions is really hard, and only few at-

tempts, at high temperatures, have been made[10, 11, 12]. Therefore, numerical simulations

are very important, both to better characterize what is observed in the experiment, and to re-

place real experiments in the vast range of the phase diagram that is still unaccesible with the

present experimental techniques. Dense liquid hydrogen has been extensively studied with

ab-initio MD driven by forces calculated at the DFT level. Most of these simulations agree

on the existence of a first-order transition in the liquid phase between the molecular and the

atomic fluid[13, 14, 15, 16, 17]. Nevertheless, its predicted position in the phase diagram

strongly depends on the particular approximation used for the exchange-correlation func-

tional, the difference being of more than one hundred GPa’s. Moreover a recent systematic

study [18] clearly demonstrates the inadequacy of standard approximated DFT functionals

calculations for solid molecular hydrogen, strongly limiting the DFT predictive power on

this subject.

Among all first principles simulation methods, the quantum Monte Carlo (QMC) method[19]

provides a good balance between accuracy and computational cost. QMC methods are the

most accurate and efficient statistical methods for treating many body quantum systems.

They do not rely on uncontrolled approximations for the electronic correlation as they allow,

in principle, the possibility to reach any desired accuracy, by simply considering correlated

wave functions of increasing complexity. Moreover, from a computational point of view,

QMC algorithms scale almost linearly with the number of processors, thus they are particu-

larly suitable for the present massively parallel supercomputers. Nevertheless, until recently

QMC has never been used as a tool to calculate forces within an ab-initio MD framework.

For this reason, previous QMC studies on dense liquid hydrogen have been limited to small

number of atoms[20, 21, 16], employing a Metropolis sampling technique based on the evalu-

ation of (noisy) energy differences[22]. Indeed, computing forces in QMC is not simple, since

finding a finite-variance force estimator is not straightforward[23, 24, 25]. Conversely, evalu-

ating forces using finite energy differences, which correspond to infinitesimal ionic displace-

ments, is computationally expensive[26], as the computational cost increase linearly with the

system size[27]. Moreover, it is not possible to use QMC forces, which come with finite and

possibly large error bars, in a standard Hamiltonian MD framework, since the simulation

would not conserve the total energy. Therefore, altough many efforts have been spent in this
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1. Introduction

direction, the application of forces from QMC has been limited to few cases[24, 26, 27, 28] and

the first attempt by Attaccalite & Sorella (2008) to combine QMC with molecular dynamics

is fairly recent[25].

In this Thesis, we improve upon the original Attaccalite & Sorella simulation on dense

liquid hydrogen and, for the first time, we perform large scale QMC simulations on this

system, namely employing long and equilibrated MD simulations, using a larger number of

atoms, on a wide range of temperatures and pressures[29]. We find that the transition from a

molecular fluids towards a fully dissociated one appears at higher pressures than previously

believed, as we observe that a liquid with mixed atomic-paired character is stable over a

wide range of pressures. The connection of this dissociative transition with the insulator

to metal transition is also discussed and extensive tests on the accuracy of the method are

reported.

Finally, we apply also this ab-initio QMC-MD on a very different system, liquid water at

ambient conditions. Understanding completely the structure of water is a recurring theme

at the interface of contemporary physics, chemistry, and biophysics. Also in this case, many

open questions still exist, which wait to be answered by both experimental and theoretical

techniques[30, 31]. From the point of view of the simulations, it has been shown that DFT

based molecular dynamics yield in general an overstructured liquid at the 1 g/cm3 density

and ambient conditions[32, 33, 30], namely displaying structural and dynamical properties

that are closer to a supercooled liquid, rather than to the one that we encounter in our ev-

eryday life. For the first time, we are able to perform a bulk water MD simulation within a

QMC approach. We obtain results for static quantities, like the atomic radial pair distribu-

tion, which are very encouraging, in view of their good agreement with experiments[34, 35].

1.1 Thesis outline

This thesis is organized as follows

• In Chapter 2 we describe the techniques that are used in ab-initio molecular dynamics,

with particular focus on QMC. The first part is devoted to the electronic methods, while

the second to the sampling techniques for the ionic configurations. In particular, the

QMC-MD methods, which makes use of QMC noisy forces to drive ionic systems to

thermal equilibrium is illustrated in Sect. 2.5

• Chapter 3 deals with the dense hydrogen problem. In the introduction we give an

overview of the wide literature on hydrogen, from the early speculations to the latest

experiments and numerical simulations. Then we introduce the results obtained with
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1.2. List of publications

our QMC ab-initio molecular dynamics. These are the main outcome of the thesis and

are followed by accuracy tests, discussions and comparison with other existing tech-

niques.

• In Chapter 4 we report preliminary results on liquid water at ambient conditions.

Along with the physical results obtained, our purpose is also to show the feasibility

of the QMC-MD as an alternative and promising tool to investigate equilibrium prop-

erties of bulk materials.

1.2 List of publications

The results contained in Sect. 2.6 and in Sect. 3.3 have been published in the following papers:

• “Finite-temperature electronic simulations without the Born-Oppenheimer constraint“,

G. Mazzola, A. Zen, and S. Sorella,

J. Chem. Phys. 137, 134112 (2012).

• “Unexpectedly high pressure for molecular dissociation in liquid hydrogen by a reli-

able electronic simulation”,

G. Mazzola, S. Yunoki, and S. Sorella,

Nature Communications, 5, 3487 (2014).

The result concerning water will be published in shortcoming publications

• “Langevin dynamics in curved manifold for an accelerated canonical sampling: appli-

cation to bulk and water clusters“

G. Mazzola, A. Zen, and S. Sorella,

in preparation.

• ”Ab-initio molecular dynamics simulation of liquid water by Quantum Monte Carlo“

A. Zen, G. Mazzola, Y. Luo, L. Guidoni and S. Sorella

in preparation.

The result reported in Sect. 3.4 and Sect. 3.5 about the insulator to metal transition and the

validation of the QMC-MD technique will be also reported in a manuscript still in prepara-

tion.
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Chapter 2
Methods

In this chapter, we review some well-known computational methods and we illustrate new

frameworks that are used to model our system. Realistic systems are made up of electrons

and ions and can be described with great accuracy by a standard non relativistic hamilto-

nian. In the first part of the chapter we describe the electronic methods, such as Quantum

Monte Carlo (QMC) and Density Functional Theory (DFT), that are used in this work to treat

the electronic problem at fixed nuclei. In the second part we illustrate the methods used for

the sampling of the nuclei once that the electronic problem is solved. We are going to high-

light some issues connected with the ionic sampling of extensive systems and we propose a

framework based on a Generalized Langevin equation that can both enhance the efficiency

of the sampling and allow the simulation of large systems with QMC noisy forces.

The fact that we can divide our realistic systems in electronic and ionic separable prob-

lems is intimately connected with the use of the Born-Oppenheimer approximation. This is a

good approximation for the main physical problem of hydrogen under pressure. However,

in the end of the chapter, we also introduce a different framework in which the electronic and

ionic coordinates are coupled. This scheme allows to do simulations at finite temperature for

both ions and electrons and is tested on the simple hydrogen molecule.

2.1 The Born-Oppenheimer approximation

The basis of most finite temperature computational approaches is the Born-Oppenheimer

(BO) separation of the system in the electronic and nuclear subsystems, implying that, at

zero temperature, the nuclei move in a potential energy surface (PES) provided by the elec-

trons. This approximation is justified by the large difference between the electronic mass me

and the average nuclear mass M, as demonstrated in the seminal paper of BO[2], by expand-
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2. Methods

ing perturbatively the Schrödinger equation in terms of (me/M)1/4. This separation of the

electronic and nuclear degrees of freedom is known as the Born-Oppenheimer approxima-

tion. Moreover, when studying systems at non zero temperatures, it is a common practice

to consider electrons in their instantaneous ground state while the nuclei can be treated ei-

ther as classical particles, following an ab initio finite temperature molecular dynamics or

as quantum particles by solving the nuclear Schrödinger equation with potential given by

the ground state electronic PES. These methods implicitly use also an adiabatic approxima-

tion, because the BO approximation does not provide only one PES, but several adiabatic

potential energy surfaces (PESs), one for each electronic eigenstate. However the nuclei are

evolved only according to one adiabatic PES and the non-adiabatic coupling between adi-

abatic PESs is neglected. This approximation is reliable only if the electronic energy gap is

large, namely when the gap between the electronic ground state and the low-lying excited

states is much larger than the thermal energy. If the temperature is high enough this is not

the case, and it is not correct to assume that the electrons are constrained into one adiabatic

PES. In Section2.6 a QMC method that can be used to take in account all the (several) PESs

implicitly is described. For the time being let us consider only cases in which the ground

state BO approximation is valid and justifies the electron-ions decoupling.

2.2 Density Functional Theory

Density Functional Theory (DFT) is now a standard technique in most branches of chemistry

and materials science. Its origin can be traced back to the Thomas-Fermi theory (1927), which

is the first approximate method for solving the electronic structure of atoms using just the

one-electron ground-state density ρ(r). In 1964, Hohenberg and Kohn[4] proved that proper-

ties of the ground state of an N-particle system can be expressed as functionals of its density.

DFT could simplify a lot the description of the many electron problem since it employ the

density (which only depends on 3 spacial coordinates) rather than the full wave function as

key variable, but, in practice, the universal energy functional is still unknown. The modern

version adopted today is Kohn-Sham (KS) DFT[36], which defines self-consistent equations

that must be solved for a set of orbitals whose density, ρ(r) is defined to be exactly that of

the real system, described by the Hamiltonian

Ĥ = −∑
i

1
2
∇2

i −∑
i,A

ZA

|ri −RA|
+ ∑

i>j

1
|ri − rj|

(2.1)

where we use atomic units (energy in Hartree, length scale in Bohr) and the indexes i, j run

over the electronic coordinates while A over the nuclei with charges ZA.
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2.2. Density Functional Theory

The starting point consist in writing the energy functional as a sum of several contributions[37,

5]:

E[ρ] = T[ρ] + Vne[ρ] + J[ρ] + Exc[ρ] (2.2)

The electron density of the KS reference system is given by

ρ(r) = ∑
i

φ(r)2. (2.3)

The kinetic energy for the KS single particle orbitals is

T[ρ(r)] = ∑
i
〈φi| −

1
2
∇2|φi〉. (2.4)

The other two known components are the external potential given by the charged nuclei,

Vne[ρ] =
∫

ρ(r)v(r)dr, v(r) = −∑
A

ZA

|r−RA|
(2.5)

and the Hartree component of the electron-electron interaction energy

J[ρ] =
1
2

∫ ∫
ρ(r)ρ(r′)
|r− r′| drdr′ (2.6)

The exchange-correlation functional Exc is everything else and no explicit form, given in

terms of ρ(r), is available up to now. In practical calculations, the XC contribution is approx-

imated, and the results are only as good as the approximation used. The simplest possible

form, known as the LDA (local density approximation), assumes that the functional is a local

functional of the density

ELDA
xc =

∫
ρ(r) εxc(ρ(r))dr (2.7)

where εxc is the exchange-correlation energy density of the homogeneous electron gas with

density ρ which can calculated using QMC methods. Starting from this very first example,

many density functional (DF) approximations have been developed for practical applications

and we refer the reader to DFT textbooks or reviews[37, 5] for a more detailed description

of all the classes of possible functionals. The Perdew-Burke-Ernzerhof (PBE)[38] exchange-

correlation functional is the most used for condensed systems. This functional belong to the

GGA family (generalized gradient approximation) of functionals, in which not only the local

value of the density at position r enters, but also its gradient. Instead in the early 1990s,

hybrids functionals were introduced by Becke[39], by replacing a fraction of GGA exchange

with Hartree-Fock (HF) exchange. Among this kind of functionals we find the B3LYP, which

is currently the most popular approximation in chemistry. The best known hybrid func-

tionals in the condensed matter community are the PBE0, which uses a mixture of 25% of

Hartree-Fock exchange with 75% PBE, and the HSE[40] functional, which uses a combina-

tion of range separation and the same mixing fractions as in PBE0 but with the Hartree-Fock
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2. Methods

calculation done only on the short-range part of the potential. We briefly introduced LDA,

PBE and HSE functionals since they are employed in the dense hydrogen DFT simulations

that will be reported in the following chapters. Many other functionals have been devel-

oped in these years, however a functional that performs uniformly better than B3LYP is still

missing. Some functional may be more accurate (compared to the experiments) for a specific

system but may fail for the others. Clearly, when calculating a property to compare with ex-

periment, one could keep trying functionals and tune the parameters until agreement with

the measured value is reached but these can not be considered first principle calculations.

An interesting discussion on whether or not DFT, with standard approximated functionals,

should be called ab-initio or empirical can be found in Ref.[5].

2.3 Quantum Monte Carlo methods

The words Monte Carlo were used for the first time in the 1940’s by scientists who were work-

ing in Los Alamos at the Manhattan Project, to indicate a class of methods for the numerical

solution of integration problems in a probabilistic way, although the ideas underlying Monte

Carlo (MC) methods were already known in the eighteenth century. In many cases, MC

methods are the only efficient approach to evaluate many-dimensional integrals of physical

interest. For example, in a system of 100 electrons the required integrals to compute expecta-

tion values are 300 dimensional, and for such problems MC integration is dramatically more

efficient than conventional quadrature methods such as Simpson’s rule. Indeed the most

successful application of MC methods in physics, is the possibility of solving exactly the

quantum many body problem, at least in some cases. We refer to textbooks( see e.g. Ref.[41])

for a complete introduction of MC methods and the probability theory on which they are

based. In the following sections we briefly describe two kinds of ground-state Quantum

Monte Carlo (QMC) methods that are employed in this thesis:

1. Variational Monte Carlo (VMC). This method consists in finding an approximate so-

lution of the Schrödinger equation, depending on some parameters. We make use of

the variational principle for obtaining of the best possible value of such parameters.

2. Diffusion Monte Carlo (DMC). This technique is a stochastic projector method for

solving the imaginary-time many-body Schrödinger equation. This method is more

accurate than VMC but it is computationally more expensive. However its success

often rely on the use of an optimized trial wave function which can be obtained only

by a good VMC calculation. Moreover DMC is not an exact method for fermions as it

needs in practice to be used within the fixed node approximation in order to avoid the
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2.3. Quantum Monte Carlo methods

infamous sign-problem.

QMC results are typically (but not always) an order of magnitude more accurate than

density-functional results obtained using the best available approximate exchange-correlation

energy functionals[19] but since QMC is much more computationally demanding than DFT

it has been applied up to now to much smaller system.

We conclude this section by noting that QMC (at variance with DFT) is not the only many-

body approach for solving electronic systems, but can be considered the one in which elec-

tronic correlations can be included in the most simple and computationally affordable way.

Indeed starting from the simplest single-determinant Hatree-Fock (HF) (1930) theory , which

includes the exchange effects arising from the antisymmetry of the many-electron wave func-

tion, but neglects the electronic correlations caused by the electron-electron Coulomb repul-

sion, several post-HF methods have been developed. Within these methods, an almost exact

solution is recovered by enlarging the basis and using linear combinations of Slater determi-

nants, e.g. configuration interactions (CI) methods. These methods are often referred as quan-

tum chemistry methods since they are computationally very demanding (cost growing as N6
el)

Recently, a combined post-HF and QMC approach has been developed by Alavi and cowork-

ers. This is a new promising quantum Monte Carlo method for the simulation of correlated

many-electron systems in full configuration-interaction (Slater determinant) spaces[42, 43]

and has recently been applied even in simulation of real solids[44].

2.3.1 Variational Monte Carlo

The Variational Monte Carlo method is in principle very simple and it is used to compute

quantum expectation values by sampling the electronic coordinates~r from the squared mod-

ulus of a trial function |ψT(~r)|2. In this way one can compute the upper bound EV to the true

ground state energy EGS as:

EGS ≤ EV =

∫
d~r ψ∗T(~r)ĤψT(~r)∫
d~r ψ∗T(~r)ψT(~r)

(2.8)

=

∫
d~r |ψT(~r)|2EL(~r)∫

d~r |ψT(~r)|2
(2.9)

where we have defined the local energy operator

EL(~r) =
ĤψT(~r)
ψT(~r)

(2.10)

The expectation value in eq.(2.9) can be calculated by standard Metropolis MC technique[45]

by sampling the un-normalized distribution |ψT(~r)|2 . At the end the total energy is com-
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2. Methods

puted as a time average (over the total M simulation steps) of the values of the local energy

EV =
1
M

M

∑
m=1

EL(~rm) (2.11)

The fluctuations of the local energy during the sampling are connected to the quality of the

trial wavefunction as for an exact eigenstate these should be exactly zero and EV → EGS. For

this reason the choice of the trial function is crucial in VMC calculations. Finally we remark

that expectation values of operators other than the Hamiltonian, such as forces, may also

be expressed as 3N-dimensional integrals (2.9) and evaluated in an analogous way. Care

should be taken on the evaluation of the error bars of these statistical quantities. Since the

samples generated in the Metropolis walk are correlated a binning technique must be used

to compute the variance[46].

2.3.2 Trial wavefunctions

The quality of the trial wave function controls the statistical efficiency and constrains the final

accuracy of any VMC (and DMC) simulation. Also, the evaluation of the trial wave function

(and its gradient in many cases) is the most demanding part of the computation. Moreover

the trial function contains several variational parameters that have to be optimized in order

to approach the ground state, i.e. find the lowest energy within a given trial ansatz. The

larger is the number of variational parameters the better should be in principle the conver-

gence to the exact ground state. However, it is also true that optimization schemes may fail

if the the total number of parameters is too large. One should therefore seek trial wave func-

tions that are both accurate, easy to evaluate, and compact (so that they require the smallest

number of parameter to characterize physically the wavefunction). The advantage in adopt-

ing QMC consists essentially in using explicitly correlated electronic wavefunction that can

substantially improve on the single particle HF ansatz.

In QMC simulations, as in this thesis, trial wave functions of the Slater-Jastrow type (Jas-

trow, 1955) are used. They consist of a single Slater determinant multiplied by a totally

symmetric non-negative Jastrow correlation factor that includes the cusps.

ψT(~r) = J(~r) D(~r) (2.12)

The Slater determinant D gives the correct fermionic/bosonic symmetry of the wavefunc-

tions while the Jastrow term J takes in account the electronic correlations as it depends

also on the interparticle distances. The orbitals in the Slater determinant are usually ob-

tained from LDA or HF calculations. However in our calculations, after initialization given

by LDA, the variational parameters contained in the orbitals are optimized in the pres-

ence of the Jastrow term. We refer the reader to the seminal works of Casula, Sorella and

12



2.3. Quantum Monte Carlo methods

coworkers[47, 48, 49] for an exhaustive description of this kind of variational trial wavefunc-

tion as well as a possible generalization, namely the Resonating Valence Bond (RVB) wave-

function. Indeed in Ref. ([49]) it is shown how the Slater determinant function is a particular

case of the more general antisymmetrized geminal power ansatz, which is based on the RVB

picture of the chemical bond.

2.3.2.1 Atomic orbitals and Slater Determinant

The atomic orbitals (AO) are the key ingredient on which both the determinant and the Jas-

trow part are constructed. Indeed our QMC code TurboRVB employs localized AO instead of

plane waves as fundamental basis set and in Ref. ([50]) the reader can find a recent and very

useful overview of all the possible types of AO that can be found in this code. In this section

we only describe briefly the ones that are used for simulating dense hydrogen.

A generic atomic orbital φa
µ(ria) of the atom a is written in terms of the radial vector

ria = ri − Ra connecting the nucleus of the atom a with the position ri of the electron i.

An (uncontracted orbital) φl,m, having azimuthal quantum number l and magnetic quantum

number m, is the product of an angular part, that is, real spherical harmonic, and a radial

part. The latter may have several functional forms; in this application, we have considered

the Gaussian type orbitals

φl,m ∝ rle−ζr2
Zl,m(Ω) (2.13)

where Zl,m is the spherical harmonic. Notice that we can use gaussian functions because

the nuclear cusp condition is satisfied by the 1-body Jastrow term. A possible generaliza-

tion consists in the so-called hybrid orbitals that represent linear combinations of different

uncontracted AOs.

φa(r; {ζk,l , ck
l,m}) =

lmax

∑
l=0

Kl

∑
k=1

l

∑
m=−l

ck
l,m φl,m(r, ζk,l)Zl,m(Ω) (2.14)

An atomic hybrid orbital φa, related to the atom a, is written as the sum of all the uncon-

tracted orbitals, of any azimuthal and magnetic quantum numbers, that we want to use to

describe the atom. Therefore, in the language of chemistry, an hybrid orbital thus may con-

tain mixtures of s and p AOs. Both the exponents and the coefficients have to be conveniently

optimized, but the advantage of this much more compact definition is that it will reduce a

lot the number of variational parameters connecting orbitals localized on different atoms (cf.

Eq.(2.16)).

Starting from this AOs we can construct the molecular orbitals (MOs) as linear combina-

tions of AOs. Thus we can obtain our Slater Determinant D using the Nel/2 lowest energy

MOs.
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In the Slater determinant ΨSD, the double occupied molecular orbitals ψi, with index

i = 1, . . . , N/2 (N is the number of electrons), are a linear combination of the localized atomic

hybrid orbitals:

ψi(r) =
M

∑
a=1

La

∑
µa=1

ca,µa
i φa,µa(r) (2.15)

where φa,µa is the µa-th atomic hybrid orbital of atom a, centered around the position Ra of

nucleus a, La is the number of atomic hybrid orbitals used for atom a, for a total of L =

∑a La hybrid orbitals in the overall system, M is the total number of atoms and the M × L

coefficients ca,µa
i are variationally optimized. From what follows it may be understood why

adopting a localized atomic basis set is crucial when dealing with large systems.

Indeed, the optimization of the Slater determinant is performed by using the correspon-

dence between the single SD written in terms of molecular orbitals, and a truncated antisym-

metrized geminal power (AGPn)[49] with n = N/2, with a geminal

g(r1, r2) =
M

∑
a,b

La

∑
µa

Lb

∑
µb

ga,b
µa,µb

φa,µa(r1)φb,µb(r2) (2.16)

The L× L parameters ga,b
µa,µb are related to ca,µa

i by the relation:

ga,b
µa,µb

=
N/2

∑
i=1

ca,µa
i cb,µb

i . (2.17)

The present formulation is adopted in the TurboRVB code, therefore the parameters, that

are actually optimized in this approach, are the ga,b
µa,µb ones. They are then used to obtain

the molecular orbital coefficients ca,µa
i via the diagonalization described in Refs. [49]. This

choice gives a very important technical advantage for systems of large sizes. In particular,

in order to decrease the total number of variational parameters, we have fixed to zero all

the coefficients ga,b
µa,µb connecting the atoms a and b that are at a distance Rab = ‖Ra − Rb‖

larger than an appropriately chosen cut-off rmax. In this way, a straightforward reduction of

the number of variational parameters is possible, by exploiting the fact that matrix elements

connecting localized orbitals above a threshold distance rmax do not contribute significantly

to the energy. Indeed, as we have systematically checked in several test cases (see Sect. 3.5.1),

it is enough to consider rmax= 4 a.u. to have essentially converged results for the molecular

orbitals, implying a drastic reduction of the variational space (from ' 33000 parameters to

' 5000 in a 256 hydrogen system, using one hybrid atomic orbital with 2s gaussian basis per

atom).
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2.3.2.2 Jastrow factor

The bosonic Jastrow term, J = eU , represents a compact way to take into account explicitly

the electronic correlations since it depends directly on distances between electrons. There

are many different choices for this factor; in this work we have used a Jastrow factor that

account up to the 3-body interaction. The 1-body term is used to satisfy the nuclear-electron

cusp condition. Hence the total Jastrow reads

J = J1 J2 J3 (2.18)

The term U1 is a one electron interaction term which improves the electron-nucleus correla-

tion and satisfies the nuclear cusp conditions. The exact functional form is given by

U1 = −
M

∑
a
[(2Za)

3/4
N

∑
i

u1(
4
√

2Za ria)] +
M

∑
a

LJ
a

∑
νa

N

∑
i

f a
νa

φa
νa
(ria) (2.19)

where the vector ria = riRa is the difference between the position of the nucleus a and the

electron i, Za is the electronic charge of the nucleus a, LJ
a is the number of atomic orbitals

φa
νa

that are used to describe the atom a, f a
νa

are variational parameters and the function

u1(x) = (1− e−b1x)/2b1 depends parametrically on the value of b1.

The U2(r) factor is an homogeneous two body interaction term. It depends only on the

relative distance rij between pairs of electrons. The specific functional form reads

U2(r) =
N

∑
i<j

u2(rij) (2.20)

where u2(x) = (1− e−b2x)/2b2 and b2 is a variational parameter. Finally the 3 body term is

an inhomogeneous two electron interaction that depends also on the relative position of the

electrons and the nucleus, i.e. it’s an e-e-n interaction. Its functional form is

U3(r, R) =
N

∑
i<j

[
M

∑
a

LJ
a

∑
µa,νa

f a
νa,µa

φa
νa
(ria)φ

a
µa
(rja)] (2.21)

where φa
µa

are the uncontracted atomic orbitals centered on atom a. Notice that this is an

on site interaction which is included as a particular case of the more general 4-body e-e-n-n

interaction U4(r, R) = ∑N
i<j[∑

M
a ∑M

b ∑LJ
a

νa ∑
LJ

b
νb f a,b

νa,νb φa
νa
(ria)φ

b
νb
(rjb)]

2.3.2.3 Optimization method

The integral (2.9) provides the value of the energy within a given trial wavefunction ansatz

ψT(α) which depends on a (possibly very large) set of parameters {~α}. These are for example

the parameters f a,b
νa,νb , b1, b2 defined in the Jastrow above as well as the parameters that define
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the AOs and the hybrid orbitals {ζk,l , ck
l,m} and the expansion coefficients of the MOs. Ac-

cording to the variational principle, the exact ground state energy EGS represents the lowest

bound for any variational wave function; so the idea is to optimize all these parameters in

order to get the lowest possible energy within the given functional ansatz ψ(α).

In order to optimize the wavefunction we employ an iterative method in which the pa-

rameters~α are changed at each step accordingly to the generalized forces ~f (~α) = −∂E[~α]/∂~α.

Advanced method such as stochastic reconfiguration (SR)[51, 52] and the linear method[53, 54]

also take in account higher order derivatives, like the Hessian matrix.

For the problem of dense hydrogen we tested different optimization procedures with

the linear method[53] being the optimal choice. The number of optimization steps clearly

depends on the accuracy required for the total energy. This number can be substantially

reduced if the trial wavefunction represents already a good starting point, and this is the case

for the optimization during the molecular dynamics. Indeed, given that the wavefunction

ψ(~α[R]) is correctly optimized at ionic position R, ψ(~α[R]) is a good starting point for the

new wavefunction at position R + δR. The smaller is |δR|, which is controlled by the time

step ∆, the closer will be the two optimized wavefunctions. In this case a small number, i.e.

5-6, of SHR steps are sufficient to maintain the wavefunction close to ground state PES that

is reachable within the given variational ansatz.

Instead, if an optimization from scratch is required, the minimization procedure takes

longer. The first step consists in initializing the Slater Determinant by constructing the set of

MOs with a preliminary LDA calculation. In the second step we optimize the Jastrow keep-

ing fixed the determinant. We call such wavefunction ansatz as JDFT. Finally we improve on

the DFT Slater Determinant (i.e. modifying the nodal surface) by optimizing the determinant

parameters in the presence of the Jastrow. In this way we obtain the first JSD ansatz, at fixed

ionic positions ~R that we use as a starting point for the dynamics.

2.3.3 QMC nuclear forces

The majority of QMC applications has been limited to the calculation of the ground-state

total energy. In principle, there is no difficulty for computing other observables. However,

in practice, the convergence of the Monte Carlo calculations can be either much more slower

than the energy or even impossible if infinite-variance problems arise. Accurate energy calcu-

lations are directly related to good trial wave functions as it can be proven that the error in

the energy EV and variance scales as the error squared in the wavefunction (see. e.g. Ref.[24])

δE ≡ EV − EGS ∼ O[δψ2] (2.22)

σ2[EL] = 〈(EL − EV)
2〉ψ2

T
∼ O[δψ2] (2.23)

16



2.3. Quantum Monte Carlo methods

with the variational and local energy as defined in 2.3.1 and the error in the wavefunction is

δψ ≡ ψT − ψGS, where ψGS is the exact ground state wavefunction. Eq.(2.23) tells that energy

is accurate at order two in the wavefunction. This very favourable scaling is no longer true

for other properties. In this section we will briefly focus on evaluation of nuclear forces that

are essential to perform molecular dynamics. The nuclear force acting on nucleus a is defined

as

fa = −∇aEV [ψ] (2.24)

Since both the Hamiltonian operator Ĥ (2.1) and the wavefunction ψ depend parametrically

on the atomic positions R, the expression for the force is

fa = −
∫

∂EL
∂Ra

ψ2 dr∫
ψ2 dr

− 2

∫
(EL(r)− EV [ψ])

∂ log |ψ|
∂Ra

ψ2 dr∫
ψ2 dr

+ f bias
a (2.25)

The first term is referred as Hellmann-Feynman term while the second as Pulay term. Notice

that the name Hellmann-Feynman (HF) is given only on the basis of a similarity with the

HF theorem, which in this case can not be applicable since the variational wavefunction is

not an eigenstate of Ĥ. Therefore, from the magnitude of the HF term with respect to the

Pulay we can estimate the quality of the trial wavefunction. Let us investigate one major

difficulty connected with the QMC evaluation of Eq.(2.25), the so-called infinite variance

problem. For example, the HF term contains a contribution to the force which is proportional

to 1/d2, where d is the electron-nucleus distance. This leads to a diverging variance even for

the simplest hydrogen atom case (see e.g Ref.[55]). Also, in the Pulay force there is a similar

problematic behavior in proximity of the nodal surface, because both EL and ∂ log |ψ| diverge

as the nodal surface is approached. While the the infinite variance problem in the HF term

can be solved by employing renormalized force estimators, following a scheme proposed by

Assaraf and Caffarel[23, 24], the Pulay divergence needs to be removed in a different way,

that is using the reweighting technique introduced by Attaccalite and Sorella[25].

Finally, the last term in Eq.(2.25) is

f bias
a = −∑

k

∂EV [ψ]

∂αk

∂αk

∂Ra
(2.26)

and is exactly zero if the energy is correctly optimized, i.e. ∂EV [ψ]/∂αk = 0. For this reason,

assuming that the wavefunction is very close to the energy minimum, we neglect this com-

plicated term in our calculation. Nevertheless, we experienced that this bias force is far from

being negligible if the optimization has not been correctly achieved. Moreover, we observed

that this kind of contribution acts like a dissipative force, i.e. limiting the displacements of

the ions during the dynamics. This effect is well known also in the context of DFT within the

so-called second generation Car-Parrinello dynamics approach, where a dissipative unknown

17



2. Methods

force arises from a non optimal propagation of the electronic density at each MD step (see

Ref.[56, 57] for details).

Despite the apparent complexity of the expression of the force estimator of Eq.(2.25), the

computational gain with respect to the simple finite-difference technique is evident, espe-

cially for large systems. Indeed the choice

fa = −
EV(Ra + ∆Ra)− EV(Ra)

∆Ra
(2.27)

leads to the computation of 3M energy differences, with M number of atoms, that is a com-

putational bottleneck if M is very large. This scaling clearly holds even if Eq.(2.27) is eval-

uated by means of a correlated sampling such as the Space Warp Coordinate Transformation

(SWCT)[58].

The great advantage in evaluating the forces without resorting to a finite difference scheme

has been proved by Capriotti and Sorella[27]. In that work the evaluation of the force esti-

mator in Eq.(2.25) was done in conjunction with SWCT and algorithmic differentiation (AD);

the scope of SWCT is in reducing the statistical error in the evaluation of the force estimator

rather than performing the finite-difference evaluation of the total energy. AD is employed

instead to compute automatically all the partial derivatives, (∂/∂Ra)EL, (∂/∂Ra) log ψ, (∂/∂ri)EL,

· · · that appear in Eq.(2.25) and in the modified version in which SWCT are used1. We re-

fer the reader to the original paper[27] for a general overview of the AD technique and to

Refs.[27, 50] for a self-contained description of the SWCT in the context of QMC. Although

the SWCT+AD technique was implemented in our hydrogen calculations this new achieve-

ment was not essential in performing the large scale simulation described in Chapter3. In-

deed in the seminal paper of Attacalite and Sorella[25] a system of 128 hydrogen atoms was

already simulated, without computing forces with the SWCT+AD method. The SWCT+AD

technique has proven to be substantially more efficient for heavy atoms instead and when

pseudopotentials are used, as in the case of water simulations[27]. For the above reasons

we choose to avoid a lengthy description of these techniques in this thesis which is mainly

devoted to hydrogen at high pressures.

2.3.4 Diffusion Monte Carlo

This last section about QMC methods deals with the Diffusion Monte Carlo (DMC) technique.

DMC is an -in principle exact- projection methods, unlike VMC. However, as anticipated,

for practical purposes the introduction of a trial wavefunction ψT is essential even in this

framework, both to enhance the efficiency of the method and to circumvent the fermionic

sign problem by introducing some approximations. For these reason, a good DMC calculation

1see Eq. (15) of Ref.[27].
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has always to be done on top of a good VMC trial wavefunction optimization. DMC with

ψT importance sampling was first used in the work of Ceperley and Alder[59] and is a well

established technique. Suggested reviews on this topic are Ref.[60] for molecular systems

and [19] for solid state systems. In this section we give a short self-contained description of

the DMC in the configuration space, following the lines of Foulkes[19] and Pederiva[41].

DMC is a stochastic projector method for solving the imaginary-time many-body Schrodinger

equation

− ∂ψ(r, τ)

∂τ
= (H − E0)ψ(r, τ) (2.28)

The propagation in imaginary time of an arbitrary wavefunction of a system, projects from

this function the eigenstate of H which has the lowest energy, among those along which the

initial state has a non-vanishing component. Indeed the solution of Eq.(2.28) reads

ψ(r, τ) = e−τ(H−E0) = ∑
n

cne−τ(En−E0)φn(r) (2.29)

where En are the eigenvalues corresponding to the eigenstates of H, φn. The projections

along the eigenstates decay exponentially with different time scales τEn. By using the nor-

malization e−τE0 is possible to filter out every excited eigenstate for a sufficient large time, as

in the limit τ → ∞ we obtain the ground state of H:

lim
τ→∞

ψ(r, τ) = c0φ0(r) (2.30)

In order to introduce how the diffusion algorithm works let us explicitly write Eq.(2.28) with

the standard hamiltonian

− ∂ψ(r, τ)

∂τ
=

1
2 ∑

i
∇2

i ψ(r, τ) + V(r)ψ(r, τ) (2.31)

where r = {r1, r2, · · · , rN} represents the collection of all the particles. This equation rep-

resents a diffusion equation with an absorption term, as can be realized by considering two

limiting cases. If we neglect the potential V, then Eq.(2.31) becomes a diffusion equation

∂ψ(r, τ)

∂τ
=

1
2 ∑

i
∇2

i ψ(r, τ). (2.32)

The exact solution can be recast in integral form as

ψ(r, τ) =
∫

G(r− r′, τ)ψ(r′, 0) dr′ (2.33)

where the Green’s function is the free diffusion propagator

G(r− r′, τ) = − 1
(2πτ)3N/2 e−

(r−r′)2
2τ (2.34)
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Then if we represent the desired distribution ψ(r, τ) by a set of discrete or random walkers,

the (pseudo)dynamics of the 3N-dimensional walker is given by r′j = rj + ηj, with ηj being a

gaussian distributed random variable with variance τ.

If we neglect the diffusion term, then Eq.(2.32) (with a renormalization energy E0) reduces

to

− ∂ψ(r, τ)

∂τ
= [V(r)− E0]ψ(r, τ) (2.35)

and its solution

ψ(r, τ) = e[V(r)−E0]τ (2.36)

represents a survival probability (after a time τ) that depends on the position r. From the

point of view of the algorithm, this process is called branching or reweighting and can be

implemented in several ways. Either we can associate to each walker a weight that depends

on this probability, or we can kill or spawn more walkers at each step depending on this

weight. The latter technique is more efficient in practice.

In the general intermediate situation an exact expression for the propagator can not be

obtained. To this end the common Trotter-Suzuki approximated formula can be used

e−τH = e−τ(T+V) ≈ e−τV/2e−τTe−τV/2 +O[τ3] (2.37)

and the algorithm now will have to implement both the diffusive dynamics and the branch-

ing process. Since this approximation introduce a time-step error, the algorithm consist in

iterating many times diffusion/branching steps, keeping the time step τ as small as possible.

After this process has been iterated for a sufficient long time, the distribution of the walker

will be stationary and should sample correctly the ground state φ0(r). The value of E0, which

is an initial guess, should automatically stabilize during the dynamics in order to keep the

walker population stationary.

However, this simple DMC algorithm turns out to be “usually spectacularly inefficient”[19]

due to the large fluctuations of the branching weight, hence of the walker population. This

happens when the (charged) particles become very close and in these cases is convenient

to introduce an approximate guiding function to drive the walkers far away from the prob-

lematic regions in the configuration space. Let us consider, then, a trial wavefunction ψT

(obtained for instance from a VMC calculation). In the importance sampling DMC the walk-

ers are sampled from a density f (r, τ) = ψT(r)φ(r, τ) which evolves in imaginary time, and

is proportional in the large time limit to ψT(r)φ0(r). By multiplying Eq.(2.31) by ψT we obtain

the equation which control the evolution of f

− ∂ f (r, τ)

∂τ
= −1

2
∇2 f (r, τ) +∇ · [vD(r) f (r, τ)] + [EL(r)− ET] f (r, τ) (2.38)
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where ∇ = (∇1,∇2, · · · ), vD(r) is a 3N-dimensional drift velocity given by

vD(r) = ∇ log |ψT(r)| (2.39)

and EL is the usual local energy as defined in Eq.(2.10) in the VMC section. The correspond-

ing (approximate short time) propagator is now the product Gd(r, r′, τ) ≈ Gd GB of a modi-

fied diffusion Green’s function

Gd(r, r′, τ) = − 1
(2πτ)3N/2 exp

[
− (r− r′ − τvD(r))2

2τ

]
(2.40)

and a modified branching weight

Gb(r, r′, τ) = exp
[
−τ/2

(
EL(r) + EL(r′)− 2E0

)]
(2.41)

The advantages connected with the importance sampling are clear both in the diffusion and

in the branching part. Since the drift velocity vD(r) carries the walkers along in the direc-

tion of increasing ψT, the region in which ψT is large are sampled more frequently and the

walker may avoid specific regions in which ψT = 0, i.e. when two electron becomes in con-

tact. Moreover the exponent in the reweighting term Eq.(2.41) now contains the local energy

instead of the potential energy. This is important because for a ψT the local energy is close

to the ground-state energy and roughly constant, so the population fluctuations are strongly

reduced. The importance sampling energy estimator can be computed as

E0 =
〈φ0|H|ψT〉
〈φ0|ψT〉

= lim
τ→∞

∫
f (r, τ)HψT(r)

ψT(r)
dr∫

f (r, τ)dr
(2.42)

Moreover importance-sampling transformation is also extremely helpful in satisfying the

fixed-node constraint that will be introduced in the following. The fixed node (FN) approxi-

mation is, up to now, mandatory when applying DMC to fermionic systems.

Indeed, since in DMC the wave function has to be a population density, DMC can only

employ the constant sign solutions of Schrödinger equation. This is a serious issue if one is

interested in the ground-state of a fermion system where the wave function is antisymmetric

i.e. both positive and negative. The standard way of dealing with negative weights of the

fermionic system is to sample with respect to the bosonic system by using the absolute values

of the weights | f (r, τ)| and to assign a sign to the quantity being sampled. However, the

statistical errors increase exponentially with the particle number N. Many attempts to solve

this (negative) sign problem have been made, although it is now believed that an algorithm

which scales polinomially with N (this is the definition of “solving the sign problem”) can

not be obtained for the exact solution of a generic fermionic problem[61].
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Fixed-node DMC is an alternative and approximated method for dealing with the fermion

antisymmetry[60, 62]. Although not exact, it gives ground-state energies that satisfy a varia-

tional principle and is stable for large systems. The basic idea of FN DMC is very simple. A

trial many-electron wave function is chosen and used to define a trial many-electron nodal

surface. In this way f (r, τ) > 0 by construction. Then a standard DMC algorithm can be

applied in the regions enclosed by a nodal surface (nodal pockets). Then the Eq.(2.28) is

solved by simulating the diffusion process within the domains bounded by the assumed

fixed nodes.

This condition is satisfied if the random walks are constructed not to cross the nodes

of the trial wave function. Moreover, as mentioned before, the importance-sampling trans-

formation automatically enforces the fixed-node constraint, since whenever a walker ap-

proaches a nodal surface of ψT, the drift velocity grows as 1/d, with d being the distance

from the nodal surface, and carries it away (see again Ref.[19] for details).

This FN method has many positive features: If the nodes are correct, then the solution

is exact. Then the algorithm scales with a polynomial time: for large systems, the compu-

tational bottleneck is represented by the time taken to determine whether the system has

crossed a node, and since the nodes are given by the Slater determinant part of the ψT, the

evaluation of a general determinant requires order N3 operations[62].

Recently, a new DMC scheme, the Lattice Regularized DMC (LRDMC)[63, 64] was intro-

duced by Casula & Sorella in order to deal with heavy atoms. The main advantages of the

lattice regularization are that i) it allows the inclusion of nonlocal potentials (important for

the study of heavy atoms) in a consistent variational scheme and ii) can deal with several

length scales by using multiple lattice spaces, with great reduction of autocorrelation times

for heavy atoms or complex systems such as low density electron gases.

Finally, let us spent few words about DMC mixed estimators, i.e. estimators of observ-

ables O different then the energy, like the ionic forces. For these observables one does not get

mean values on the ground state, but rather matrix elements between the ground state and

the trial variational state:

< O >MA=
〈φ0|O|ψT〉
〈φ0|ψT〉

(2.43)

It is found that a good approximation for the exact mean value on the ground state is given

by the so-called Ceperley’s correction:

〈φ0|O|ψ0〉
〈φ0|ψ0〉

≈ 2 < O >MA − < O >VMC +O[ε2] (2.44)

where < O >VMC is the standard VMC expectation value over ψT and the error O[ε2] is of

order 2 in the distance between the real ground state and the trial function, i.e. ψT − ψ0 ∼
ε ψresidual .
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2.4. Molecular dynamics and sampling

2.4 Molecular dynamics and sampling

In the previous section we described state-of-the-art electronic methods that are used in ab-

initio simulations of materials. However this is not the end of the story as realistic materials

are composed by electrons and ions, and several properties also depend on the ionic degrees

of freedom. In order to investigate thermodynamics properties such as structural relaxations

and phase transitions it is therefore necessary to deal with the ions and sample efficiently

also their equilibrium distribution.

In the past, performing accurate electronic calculations was so computationally expen-

sive that most of the abovementioned electronic methods could not have been employed in

a molecular dynamics (MD) scheme. Indeed in all practical applications, MD calculations

employed empirical interatomic potentials and this clearly limited the predictive power of

the MD framework. The first ab-initio MD technique dates from the pioneering work of

Car & Parrinello[3] in the 1985, where for the first time, an ab initio electronic technique

such as DFT was combined with MD. Car-Parrinello (CP) method significantly reduced the

amount of computer time necessary per time step and opened the field of ab-initio simula-

tions of materials. By contrast, the straightforward approach within DFT consists in solving

the Kohn-Sham equations for a new wave function at each time step instead of performing

the fictitious CP dynamics on the wave function. This approach is sometimes referred as

Born-Oppenheimer dynamics (BOMD)[65] and in the last decade, due to the availability of

faster computer machines, re-gained popularity among the DFT community. Indeed within

BOMD a greater time step in the MD integration can be used, thus providing less correlated

configurations at each step.

Moreover, within BOMD one avoids to deal with hidden parameters such as the electron

fictitious mass and the artificial electron thermostat for systems with a small band gap. In-

deed, in the context of hydrogen research it was shown that without a full reoptimization

of the electronic wave functions in every step (as in CPMD), the degree of dissociation may

be artificially enhanced[66]. At present days, for hydrogen simulations and within standard

DFT density functionals, there is no computational barrier that prevents BOMD simulations

of large system, i.e. with a number of proton in the simulation cells large enough to neglect

finite size effects[15, 17].

This situation changes dramatically if one switches from standard DFT towards more ac-

curate methods such as QMC simulations. Let us start by clearing the field from a possible

ambiguity about the term dynamics. Strictly speaking, molecular dynamics simulations gen-

erate trajectories in phase-space by treating the nuclei classically and integrating Newton’s or
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Hamilton’s equations of motion numerically. In most cases MD is employed to obtain equi-

librium distributions at finite temperature by means of some appropriate thermostats rather

than to investigate real dynamical properties. Thermostats are used to simulate the canon-

ical, constant temperature, NVT ensamble, starting from a NVE microcanonical Newtonian

dynamics. For this reason the term molecular dynamics is commonly used also in the context

of the sampling as in this thesis, provided that some kind of thermostat is used to enforce the

correct probability distribution. For example, previous DFT simulations on hydrogen were

performed within NVT ensamble by means of a Nose-Hoover thermostat[66, 15].

2.4.1 Ionic Metropolis sampling

A different route for the sampling of ionic property is represented by the standard Metropolis

Monte Carlo (MC) algorithm[45]. At variance with the MD, this method employs a Markov

walk to sample the canonical distribution and thereby calculate thermodynamic properties

of classical many-body systems.

The advantages connected with this scheme are that i) it does not require the evaluation

of the force but only of the total energy and ii) it is possible in principle to use efficient global

updates to sample the configuration space, generating very uncorrelated samples at each

iteration. MC sampling may be superior in cases of complex systems such as macromolecules

and polymer physics[67], and generally, in all system in which there is a clear decoupling of

length scales. For example, in biophysics simulations, one would like to flip or rotate rigidly

a molecule or translate and swap entire groups of atoms, in order to enhance the sampling.

On the other hand, an efficient sampling of phase space in MC requires smart and system-

dependent trial moves, making the application of the method more intricate than molecular

dynamics where the configurational sampling obeys the general principle of following the

forces.

At the end, the choice between MD and MC sampling should depend on the system un-

der consideration. In practice, for materials and systems whose equilibration time is much

shorter than polymers and biomolecules, this choice only depends on the availability of

the ionic forces within the electronic method used. For example, simulations of water at

ambient conditions are usually performed with MD if the electronic method is DFT (with

forces)[68, 30], while MC sampling is employed if more accurate post-Hartree-Fock methods

are employed (such as MP2, without the possibility to calculate forces)[69]. The liquid water

simulations reported in Chapter 4 being a recent remarkable exception to this general rule.

Turning back to the hydrogen problem, we believe that a MD-based sampling is more

efficient than MC for liquid hydrogen at high pressure since there is no decoupling of length

scales at the densities under considerations and there is any clear notion of “rigid molecules”
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2.4. Molecular dynamics and sampling

on which global trial moves, such as block rotations and translations, can be applied.

Historically, the first QMC simulations on hydrogen[20, 70, 71, 72] employed a variant of

MC sampling instead, the Coupled Electron-Ion Monte Carlo (CEIMC)[20]. This technique is es-

sentially an implementation of the Penalty method[22] which extends the standard Metropolis

scheme in the case of noisy energy difference estimations, the energy difference being evalu-

ated with QMC electronic calculations (at different levels of accuracy, i.e. VMC or DMC). Let

us briefly recall how Metropolis sampling works and the issues connected with this choice.

It is well known that the acceptance probability of a trial move in the configuration space R

is given by

A(R→ R′) = min
[

1, exp
(

E(R′)− E(R)

kT

)]
(2.45)

hence by the energy difference between the new R′ and the old R position. This algorithm

works if E(R) is a function that can be analytically evaluated given the position R, like in

the original implementation[45] or in the context of VMC Metropolis sampling where the

local energy EL is a well defined function of the electron positions. If the energy difference

E(R′) − E(R) is evaluated with some statistical error δE instead, the acceptance/rejection

will be biased by an exponentially large factor exp (δE/kT). Naively one would require to

kill the error bar δE → 0 to a negligible level, instead, it is still possible to use a finite error

δE > 0 and modify the acceptance threshold. This is the idea behind the Penalty method[22].

Despite this remarkable improvement, the problem is still far from being solved since, in

practice, the error bar on the energy difference must be of order δE ∼ kT. Therefore, since the

error δE grows with the size of the system while kT is an intensive quantity, the larger is the

size the larger must be the QMC computational time spent to reduce the noise level to kT. For

this reason, hydrogen simulations within CEIMC technique employ supercells containing up

to 54 protons, a number that is considered almost one order of magnitude smaller than state-

of-the art DFT simulations. Although the twist averages boundary conditions (TABC)[73],

that can be viewed as the generalization of Brillouin zone integration to many-body quantum

systems, are used within CEIMC to eliminate shell effects in the kinetic energy of metallic

systems. However this number could be too small to reproduce the thermodynamic limit.

For this reason, we believe that a molecular dynamics framework should be more efficient

provided that,

• the QMC forces can be feasibly computed and drive the sampling to the relevant con-

figurations reducing the autocorrelation times,

• the noisy QMC forces (which are themselves evaluated with a finite error bar) can still

be employed in the sampling,

• we are not forced to reduce the error bar on the (extensive) energy to� kBT.
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A QMC-MD scheme which is based on a generalized second order Langevin equation

and make use of (noisy) QMC forces , was originally proposed by Attaccalite & Sorella[25] in

2008. A very similar Langevin scheme was also proposed in Refs.[56, 57] at the DFT level. In

this thesis, we report, for the first time, systematic QMC-MD large scale simulations obtained

within this framework. Moreover we describe the setup of the MD parameters in order to

obtain ergodic simulations and illustrate in more details the efficiency gain connected with

this new generalized Langevin scheme.

2.4.2 Langevin dynamics

Langevin dynamics (LD) was first introduced in molecular simulations to evaluate the prop-

erties of mesoscopic systems composed by particles in a solvent[74]. Here a noise and

a dissipative force are added to the Hamilton equations to model a bath of lighter parti-

cles. Recently, a broad interest on LD has been renewed at the interface of contemporary

molecular biology, biochemistry, and biophysics. For example, the protein folding problem,

that is a class of thermally activated rare events whose mechanism is central to the under-

standing of neurodegenerative diseases, have been tackled both via brute-force atomistic LD

simulations[75] and by a more sophisticated theoretical framework based on LD[76, 77, 78]

that is giving very promising results[79].

However, LD is now also commonly used to obtain canonical ensembles[74, 80] at finite

temperature T, even if the system is not surrounded by a “real” thermal bath. Usually, in

MD simulations the sampling can be biased, due to the finite time-step integration errors.

On the other hand, in a MC simulation the moves are accepted or rejected in such a way that

the exact distribution is enforced. Due to its stochastic nature LD, that is a stochastic molec-

ular dynamics, can be viewed as an efficient MC scheme where all the moves are accepted.

Indeed, the trial moves are not chosen at random but moving the particles in the direction of

the forces acting on them. If the usual Metropolis acceptance/rejection is also performed on

top of this proposal scheme, a variance of the MC algorithm, i.e. the Smart Monte Carlo[74] is

recovered and the equilibrium distribution sampled is exact.

Employing Smart MC sampling if the energetics are given by QMC noisy calculations is

simply too expensive and inefficient for the same reason described in Sec.(2.4.1). Therefore,

given that we have QMC ionic forces, we may choose to employ the LD sampling scheme

and pay the price of having a time step discretization error. Clearly, also the ionic forces given

by QMC calculations will be noisy quantities affected by a statistical error. Nevertheless, the

naive reason on why it is better to implement QMC noisy forces in a LD scheme rather than

in a Newtonian dynamics is quite clear, since the LD already contains a noise term. Let us

start with the first order LD, i.e. the LD that mostly resembles a MC update scheme for the
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2.5. Generalized second order Langevin dynamics

3N-dimensional positions R,

Ṙ = f (R) + η (2.46)

where f represent the force acting on the configuration R and the noise η is connected with

the temperature T and is given by the fluctuation-dissipation theorem〈ηi(t)ηj(t′)〉 = δ(t−
t′)δi,j 2kT. A friction γ, usually present in Langevin equations, would only rescales the time

scale in the first order Langevin equation, therefore we put γ = 1. We also consider the

unitary mass equation. The above equation can be easily discretized with time step ∆

Rn+1 = Rn + ∆ fn +
√

2kT∆ zn (2.47)

This is an iteration scheme that defines the new variables Rn+1 , at time tn+1 , in terms of

the Rn at time tn and of a set of normal gaussian distributed variables (3N-vector) zn. Thus,

this iteration represents just a Markov process, that can be implemented by a simple itera-

tive algorithm, once the force fn can be evaluated for a given position Rn of the N classical

particles.

It is important to emphasize that, in this iteration scheme, the noise is proportional
√

∆

and dominates, for ∆→ 0, over the deterministic force contribution, which is linear in ∆. For

this reason, if the force fn is evaluated with a statistical error δ fn at each step, this statistical

noise contribution becomes negligible in the ∆ → 0 limit compared to the thermal noise.

In practice, a finite time step must be used, therefore the forces must be evaluated with a

statistical noise |δ fn|∆ much smaller than
√

2kT∆. Nevertheless, also this condition can be

computationally too hard to be met. Therefore the strategy is to employ a generalized second

order LD in which the statistical error in the forces can be taken in account without biasing

the simulations.

2.5 Generalized second order Langevin dynamics

In this section we describe the framework of the second order LD in which one exploit the

freedom given by the fluctuation-dissipation theorem of choosing arbitrary set of matrices

for the friction and the power spectrum of the noise. Although Generalized Langevin equa-

tions (GLE) have been widely employed in the literature and are at the root of successful

algorithm such as the Colored Noise technique[81, 82, 83], we encountered some skepticism

about the choice in which the power spectrum of the noise and -consequently- the friction

matrix explicitly depends on the positions R. Therefore we are going to prove the correctness

of our GLE both formally and empirically with an illustrative example within DFT.
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Let us start with the second order Langevin equations

v̇ = −γ(R)v + f (R) + η(t) (2.48)

Ṙ = v (2.49)

〈ηi,ν(t)ηj,µ(t′)〉 = αiν,jµδ(t− t′) (2.50)

In order to derive the fluctuation-dissipation relation between the α and γ matrices we con-

sider the time-discretized version of the above equation

vn+1 = vn − ∆γ(R) vn + ∆ fn +
√

∆zn (2.51)

Rn+1 = Rn + ∆ vn (2.52)

where the covariance matrix of the random vector zn is given (for ∆→ 0) by

〈znzn′〉 = δn,n′ α(Rn) (2.53)

The strategy is now to write explicitly the Master equation for this Markov process (defined

on the joint variable (R, v)) and read off the corresponding Fokker-Planck equation in the

∆→ 0 limit. The conditional probability K(R′, v′|R, v) is given by

K(R′, v′|(R, v) =
∫

dznδ(R′ − R− ∆v)δ(v′ − v− ∆( f − γv)−
√

∆zn) exp
[
−1

2
(znα−1zn)

]
(2.54)

we obtain therefore, by using that Pn+1(R′, v′) =
∫ ∫

dR dv K(R′, v′|(R, v)Pn(R, v),

Pn+1(R′, v′) =
∫

dzn exp
[
−1

2
(znα−1zn)

]
µ(R′)P(R′ − ∆v′, v− ∆( f − γ(R′)v′)−

√
∆zn)

(2.55)

where the measure factor is µ(R′) = [1 + ∆ Trγ(R′)] + O(∆3/2). We can now expand in

small ∆ and read off the Fokker-Planck equation

∂P(R, v, t)
∂t

=

[
− ∂

∂R
v +

∂

∂v
[γ(R)v− f (R)] +

∂

∂v

[
α(R)

2
∂

∂v

]]
P(R, v, t) (2.56)

The desired equilibrium distribution (which is time independent) is the unnormalized Boltz-

mann distribution,

Peq(R, v) = exp

[
1
2 v2 + U(R)

kT

]
(2.57)

Therefore in order to make Eq. 2.57 a stationary solution of Eq. 2.56, the following relation

must hold:

γ(R) =
α(R)

2kT
(2.58)

In this way we have proven the generalized fluctuation-dissipation relation which prescribes

how to set the friction tensor γ(R), given the temperature T and the noise α(R), in order to

sample the correct Boltzmann distribution of Eq.(2.57).
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2.5.1 An illustrative example for DFT

In this section we describe one possible choice -among many others as we will see- for the

position depend γ(R) tensor. We are going to show that it is possible to enhance the effi-

ciency of the sampling by modifying the standard fluctuation-dissipation relation, adopting

a position dependent friction tensor. In this example, we focus on liquid hydrogen at high

pressure. The forces in Eq.(2.48) are obtained within standard LDA-DFT, since the purpose

of this section is to show the computational gain connected only with a GLE dynamics dis-

playing a non-trivial choice for the friction/noise matrices, i.e. γ 6= γ0I.

An ubiquitous problem in MD is the presence of multiple time scale motion. The sepa-

ration of time scales occurs when both high and low frequency degrees of freedom appears

simultaneously in the system[84], for example, in molecular liquids the bond vibrations usu-

ally occur on a time scale which is short compared to the translations and rotations. In these

cases standard MD integrators are inefficient as the maximum time step ∆ that can be used

to integrate the equations of motion must be chosen to insure accurate integration of the

highest frequency motion present in the system. In particular, if the time step ∆ is large, two

atoms originally far apart at time tn may become dangerously close at the next step tn+1 due

to a random displacement η(tn) given by thermal fluctuations. This causes serious instabil-

ities in the MD and constrains the size of the time step ∆. Ideally one would like to choose

a time step which is different for each spacial direction and, for example, perform a smaller

displacement along the line that connects two atoms.

We show that a position and velocity dependent friction tensor may alleviate this prob-

lem. Let us begin with a simpler system, that is two particle a, b in one dimension and a

(2× 2) non-diagonal friction matrix given by

γ̄ =

(
γ0 −δ

−δ γ0

)
(2.59)

If δ = 0 we recover the standard case in which the friction is a diagonal matrix with scalar

intensity γ0. The LD explicitly reads

v̇a = − (γ0va − δvb) + fa + ηa (2.60)

v̇b = − (γ0vb − δva) + fb + ηb (2.61)

and the two equations are now coupled. Let us put now δ > 0. We note that if the two

particles are approaching, i.e. va/vb < 0 then the effective friction acting on a and b is

greater than the original γ0. It is clear that this choice greatly reduces the possibility that the

two particles coincides and therefore gives a much more stable dynamics. If the two particle

are moving in the same direction instead, then this motion is less damped and therefore the
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collective translation of the two particle in one direction is enhanced and the “molecule”

may visit the space more efficiently. This illustrative example may be extended to realistic

systems in several way. For example, we can define the 3N × 3N friction matrix in such

a way that we enhance the friction along the radial direction between two particle whose

relative distance r ≡ |Ri − Rj|is under a cutoff rc,

γ̄i,µ;j,ν =

(
γ0 + δ ∑

k
|ui,k

µ |ε i,kδµ,ν

)
δi,µ;j,ν − δ |ui,j

µ |δµ,νε i,j (2.62)

with

ε i,j =

1, if |Ri − Rj| < rc

0, otherwise.
(2.63)

where i, j are the particle indexes, µ, ν = {x, y, z} and ui,j is the unit vector ui,j = Ri − Rj/|Ri − Rj|
denoting the direction of the relative i− j “bond”. With this choice, only particles whose dis-

tance is below rc are effectively damped along the interparticle separation u.

We discovered that this particular choice of the friction matrix leads to equations that are

very similar to the Diffusive particle dynamics technique, originally proposed in the context

of hydrodynamics simulations[85] and the so-called Peters thermostat[86, 87] employed in

mesoscopic simulations of liquids. Nevertheless, to our knowledge, it is the first time that

these equations are explicitly devised with the goal of stabilizing a Langevin dynamics and

applied to an atomistic system rather than represent merely a convenient thermostat for

hydrodynamics mesoscopic simulations.

We employ this technique for simulating liquid at high pressure in the molecular phase

(at a density of rs=1.8 and target temperature of 600 K, N=64) with DFT2. We choose the

cutoff rc = 1.6 Bohr, that is, slightly larger than the equilibrium molecular distance. In this

way, with δ > 0 we will slow down more the intramolecular vibration compared to the inter-

molecular relaxations and the molecular rotations. Nevertheless, our choice is general and

does not require an a-priori definition of “rigid molecules”, as the pairs that feel the addi-

tional friction may vary during the simulation. In Fig.(2.1) and (2.2) we show that the GLE

with δ > 0 does not introduce any bias in the simulation. Moreover, the δ > 0 simulations

always perform better for fixed time-step ∆ than the standard diagonal friction, as the finite

time-step error is greatly reduced. Overall, these simulations look more stable and a larger

integration time step can be used. In Fig.(2.1) is shown the convergence of the pressure P and

temperature T as a function of the ∆, while in In Fig.(2.2) we plot the radial pair distribution

functions g(r) for the two LD (GLE and standard) at fixed ∆.

2We use a modified version of the QuantumEspresso code[88] in which we have implemented this GLE. We

use the LDA XC functional.
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Figure 2.1: Convergence of temperature T and pressure P as a function of the GLE time step ∆. Black

points refer to a standard second order LD with diagonal friction γ = γ0 I while red point to a GLE

with friction given by Eq.(2.62). We put γ0 = 1.2 a.u. and δ = 1.6 a.u. The GLE simulations with

δ > 0 extrapolate better than the standard LD.

As expected Eq.(2.62) reduces the time step error for all these quantities. Clearly it is

not possible to eliminate entirely this discretization error by solely acting on the friction

within second order LD. Instead, this should be possible only within the first order Langevin

equation framework, as in this case the friction completely rescale the times. However, as

shown in Sec(A.2), the first order discretized equation with position dependent friction and

noise are much more involved and difficult to implement in atomistic simulation codes.

In order to demonstrate that this technique really represents an improvement with re-

spect to the standard LD it is necessary to show that with Eq.(2.62) we are damping only

selected modes and not all the degrees of freedom, uniformely, with a friction which is

≈ γ0 + δ. Indeed, the eigenvalues spectrum of the friction matrix Eq.(2.62) shows that M

modes are always completely untouched (the friction remains γ0) while the others 3N −M
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Figure 2.2: Radial pair distribution functions. Blue points refer to a standard second order LD with

diagonal friction γ = γ0 I and ∆ = 2 a.u. while red point to a GLE with friction given by Eq.(2.62)

again and ∆ = 2 a.u. The red GLE curve displays a profile which is in better agreement with the

correct ∆ → 0 function. We put γ0 = 1.2 a.u. and δ = 1.6 a.u. As comparison we plot also a

converged standard LD profile (black line). Finally in the inset we show that the same limiting curve

is obtained for small ∆ for both the standard (black) and the GLE (pink).

are damped with a friction γe f f > γ0. The ratio M/3N depends on the choice of the cutoff rc.

The minimum eigenvalue is γmin = γ0, while the maximum is γmax > γ0 + δ (see Fig.(2.3(a))).

Notice that few modes are effectively damped with a friction that is 3 times larger than γ0.

In Fig.(2.3(b)) we show that global relaxations, starting from an out-of-equilibrium protonic

configuration, are instead not damped by Eq.(2.62). Therefore the larger friction only cor-

respond to the intramolecular radial motion and does not affect the relative intermolecular

motion (slow modes).

In conclusion, we have provided a simple example of GLE that improves the ∆→ 0 con-

vergence of the simulations and allows to employ larger time steps, thus providing less auto-

correlated samples. This particular choice, that can be eventually improved, can be adopted,

without any effort, in every DFT or empirical force field code.
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Figure 2.3: Friction eigenvalues. a Histogram of the 3N eigenvalues of the friction matrix given

by Eq.(2.62) with γ0 = 1.2 a.u. and δ = 1.6 a.u. The spectrum goes from a minimum value of

γmin = γ0 to a maximum γmax > 4. b Structural relaxation employing zero-temperature GLE. Black

solid circles points refer to a standard second order LD with diagonal friction γ = γmin I while red

triangles to a GLE with friction given by Eq.(2.62). Black open circles refer instead to a standard

second order LD with diagonal friction given by γmax = 4. Notice that these two latter setting are

far from being equivalent since, in the GLE case the γmax value only applies for few intramolecular

degrees of freedom that do not affect the structural optimization.
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2.5.2 QMC noise correction

The basic idea underlining the QMC noise correction technique is the following: ideally one

would like to follow the Newton’s equations

v̇ = f (R) (2.64)

Ṙ = v (2.65)

as in DFT. Instead, within QMC, the forces F are given with some statistical error ηQMC,

which depends on the length of the QMC electronic simulation. This ηQMC prevent us from

integrate the Newtonian dynamics since the total energy is not conserved. This effect can be

seen even in the simple case of H2 molecule(see Fig.2.4). Therefore, we can not employ QMC

noisy forces in real-time MD simulations but still we can use them for Langevin sampling. In

order to recover a Langevin equation instead and, at least, sample the Boltzmann distribu-

tion, following Eq.(2.48), we should take in account the QMC noise by introducing a suitable

damping γQMC,

v̇ = −γQMC(R)v + f (R) + ηQMC (2.66)

Ṙ = v (2.67)

〈ηQMC
i,ν (t)ηQMC

j,µ (t′)〉 = αQMC
iν,jµ δ(t− t′) (2.68)

The effective damping γQMC is connected with the strength of the QMC noise power spec-

trum αQMC by the fluctuation dissipation theorem. Therefore, the larger is the noise, the

larger is the effective friction that will be artificially put in the MD.

Let us now describe the QMC noise correction equations in more detail. For the time

being, we are going to illustrate such framework in the case of the simple integrator scheme

for the Langevin dynamics. Once again we start from the Langevin equations of motions,

v̇ = −γ(R) · v + f (R) + η(t) (2.69)

Ṙ = v (2.70)

〈η(t)〉 = 0〈
ηi(t)ηj(t′)

〉
= αij(R) δ(t− t′)

where R, v, f are the 3N-dimensional vectors made respectively by the positions, the veloc-

ities and the forces of the M nuclei, the indexes i, j run over all the 3N nuclear coordinates,

and η is a 3N-dimensional vector representing the noise force, that is determined by the

fluctuation-dissipation theorem of Eq.(2.58). Since in Eq.(2.58) one of the two matrices is

arbitrary, this time we can choose α(R) in the following form:

α(R) = α0I + ∆0αQMC(R) (2.71)
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Figure 2.4: Vibration of the H2 molecule simulated with Newtonian dynamics (Verlet algorithm),

using VMC noisy forces. The bin length of each VMC electronic simulation is 2000, that is quite

large, given that the variational trial wavefunction contains only 20 parameters. We can see that the

oscillations becomes more and more damped as the simulation proceeds, due to the VMC noise in

the forces. Notice also that the period of the vibrations is in good agreement with the experimental

one that is 1/1.3 × 1014Hz ≈ 320 a.u. in atomic units of time (Hartree−1). Indeed, from the plot

we can estimate the period being in ≈ 333 a.u., since the integration time ∆ ≈ 3.03a.u. The ≈ 6%

deviation from the experimental value is due to the anharmonicity effect, as in our simulation the

bond length oscillations extend far away from the equilibrium distance 1.4 Bohr. Nevertheless this is

a good quality check for the VMC forces.

where the 3N-dimensional matrix αQMC(R) defines the correlation of the forces in QMC:

αQMC
ij (R) =

〈
( fi(R)− 〈 fi(R)〉)

(
f j(R)−

〈
f j(R)

〉)〉
(2.72)

where 〈·〉 indicates the statistical average over the QMC sampling. I is the identity matrix,

α0 is a constant that should be optimized to minimize the autocorrelation time and therefore

the efficiency of the sampling. Indeed, it is better for practical purposes (and for the stability

of the MD) to add an external and QMC-independent friction to the Langevin dynamics. In

the limiting case of very low QMC noise the LD can be eventually underdamped providing
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an unoptimal sampling[89, 81]. We may discretize Eqs.(2.69) with the simple

vn+1 = vn − ∆γ(R) vn + ∆ fn + ηn (2.73)

Rn+1 = Rn + ∆ vn (2.74)

with the discrete (time integrated) noise correlator at time tn is given by

〈ηiηj〉 = α =
2Tγn

∆
(2.75)

Since the forces already contains the QMC noise at each time step, the true external noise

that we have to put in the LD is

ηext = η− ηQMC (2.76)

Since the external noise and the QMC noise are clearly independent the corresponding cor-

relator matrix is

〈ηext
i ηext

j 〉 = αext = α− αQMC (2.77)

which is a positive definite matrix provided that ∆0 ≥ ∆. In this way, the QMC noise rescale

the friction matrix but is not “double counted” in the thermal noise η that one puts in the

Langevin simulation, since it is already present in the forces f . In Fig.2.5) we report an

illustrative example of this connection between the statistical QMC noise and the damping

of the MD. The main advantage of this technique is that the QMC noise on the total energy

and forces can be also larger than the target temperature T.

2.5.2.1 Large friction integration scheme

Within this framework, the friction can be quite large due to the QMC contribution. There-

fore, we developed a more accurate integration scheme (see Ref.[29]) that allows us to em-

ploy a large time step ∆ even in presence of large friction γ, i.e. without suffering from the

stability constrain ∆γ < 1 like in standard integration scheme defined in Eqs.(2.73).

When the friction matrix γ(R) is large, the velocities can have strong variations in the

discrete time integration step ∆. Indeed, we now assume only that in the time interval

tn − τ/2 < t < tn + τ/2,

n indexing the time steps, the positions R are changing a little and, within a good approx-

imation, we can neglect the R dependence in the right hand side of Eq.(2.69). Moreover

the velocities vn are computed at half-integer times tn − τ/2, whereas coordinates Rn are

assumed to be defined at integer times:

vn ≡ v(tn − τ/2) (2.78)

Rn ≡ R(tn) (2.79)
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Figure 2.5: H2 molecule simulated with GLE with noise correction for two different values of the

VMC bin length. Left Panel: total energy as a function of the MD steps. The smaller the bin, the

greater are the error bars. Right panel: bond length as a function of the MD steps. The smaller the

bin, the more damped are the oscillations.

and the quantities that are functions of R in Eq.(2.69) are calculated in Rn:

fn ≡ f (Rn) (2.80)

γn ≡ γ(Rn). (2.81)

Then the solution can be given in a closed form:

vn+1 = e−γnτvn + Γn · ( fn + η̃) (2.82)

Rn+1 = Rn + e−γnτ/2 · Γn · vn

+Θn · ( fn + ˜̃η) (2.83)
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where we have introduced the following quantities:

Γn = γ−1
n (I − e−γnτ) (2.84)

Θn = γ−1
n (τI − e−γnτ/2Γn) (2.85)

η̃ =
γn

2 sinh(γnτ/2)

tn+τ/2∫
tn−τ/2

eγn(t−tn)η(t) dt (2.86)

˜̃η = Θ−1
n

tn+1∫
tn

dt
t∫

tn−τ/2

dt′eγn(t′−t)η(t′) (2.87)

By using that [α, γ] = 0 and a little algebra, the correlator defining the discrete (time inte-

grated) noise can be computed and gives:〈
η̃iη̃j

〉
≡ ᾱ1,1

ij (2.88)〈
˜̃ηi

˜̃η j

〉
≡ ᾱ2,2

ij (2.89)〈
η̃i ˜̃η j

〉
≡ ᾱ1,2

ij (2.90)〈
˜̃ηiη̃j
〉
≡ ᾱ2,1

ij = ᾱ1,2
ij (2.91)

where the values of ᾱ1,1
ij , ᾱ1,2

ij and ᾱ2,2
ij are defined by the following 3N-dimensional matrices:

ᾱ1,1 = 2T γ2
n

sinh(γnτ)

[2 sinh(γnτ/2)]2

ᾱ2,2 = 2T γ−1
n ·Θ−2

n ·[
τI + γ−1

n
(
−I + e−γnτ/2 + e−2γnτ − e−3γnτ/2

)]
ᾱ1,2 = 2T

γn ·Θ−1
n ·

(
2eγnτ/2 − 2I − e−γnτ + e−2γnτ

)
4γn sinh(γnτ/2)

The equations determining the noise correlations are now more complicated, as they in-

volve a 2× 2 block matrix ᾱa,b, where each block is a 3N × 3N submatrix, and a, b = 1, 2.

Apart for this, the generalization of the noise correction to this case is straightforward, as to

each of the four submatrices we have to subtract the 3N × 3N QMC correlation of the forces

αQMC, namely

ᾱa,b
ext = ᾱa,b − αQMC (2.92)

is the true external noise we have to add to the system. Now the resulting matrix ᾱext is

indeed positive definite provided ∆0 > 4
3 ∆.

We test the convergence of this improved numerical scheme against the standard dis-

cretization scheme of Eqs.(2.73) on an analytically solvable classical toy model (2.6). In this

example forces are computed analytically, i.e. αQMC = 0, nevertheless the gain obtained by

this new discretization scheme is clear.
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Figure 2.6: Convergence of total energy as a function of the time step ∆ for fixed friction and

temperature (arbitrary unit). The toy model consists in a 2D particle subject to a radial potential

U(r) = k(r − r0)
2. The new sampling scheme (red) is more accurate for larger ∆ than the standard

so-called Euler discretization scheme (black).

2.5.2.2 Covariance matrix of the QMC forces

The advantages given by the αQMC as a key ingredient of the MD are essentially two, one is

related to the stability of the MD against the QMC fluctuations, the other is an increase in the

efficiency of the sampling.

The first one is simple to describe. Let us suppose that the component fk of the total

force f has a large fluctuation due to the QMC statistical errors, i.e. fk = f true
k + ηQMC

k so

that the estimated forces is very different from the value f true
k which one would obtain with

a QMC run with infinite bin size. Therefore, the corresponding change in the velocity along

the component vk is great and may eventually lead to a serious instability in the dynamics. If

instead the friction γk is proportional to such noise fluctuation the velocity is damped by this

factor and the corresponding ionic displacement along this direction Rk is reduced. Thus the

probability that an unfortunate QMC noise fluctuation may cause an instability in the MD is
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also reduced.

The second advantage is less evident. Since the friction matrix γ(R) is now position

dependent, it encodes valuable informations about the system. We already showed the ef-

ficiency gain connected with a suitable position dependent friction in Sect. 2.5.1. In that

case,γ(R) was arbitrarily chosen by us, following a reasonable stability consideration. In

the noise correction case, the friction is automatically set by αQMC(R). Nevertheless, also

the αQMC(R) contains informations on which pairs of atoms are closer, as the matrix γ̄(R)

defined in Sect. 2.5.1, since the statistical QMC noise of the forces is more correlated on the

nearest neighbours atoms than on atoms that are placed at large distance. In Fig.(2.7) we

show that, for the same configuration R, γ̄(R) and γQMC(R) share some similarities. There-

fore, by using the position dependent γQMC(R) one also automatically increases the friction

on the direction along two nearest neighbours atoms.
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(a) αQMC(R) matrix
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Figure 2.7: Small portion of the αQMC(R) and γ̄(R) matrices evaluated on the same 64 atom config-

uration R. The off-diagonal terms of the γ̄(R) matrix, defined in in Sect. 2.5.1, basically gives the

information on which pair of atoms i, j are close (see upper-left/bottom-right corners of these subma-

trices). The indexes i, j run on the particle, while µ, ν = {x, y, z}. Although the αQMC(R) submatrix

is quite noisy, it has (on average) larger entries on the same block i, j which has nonzero elements in

γ̄(R) (highlighted with a circle). Therefore the covariance matrix of the forces has already in itself

information on the relative distances of the particles within the configuration R. The color legend in

the left panel is: red→ low values; blue→ high values.

Besides from these qualitative considerations, it was recently discovered that the covari-

ance matrix αQMC obtained with QMC is empirically proportional to the dynamical matrix

(see Ref.[90]). Therefore with a finite and large ∆0 the high energy modes with high fre-

quency vibrations can be systematically damped, and this clearly allows a faster propagation

with larger time step ∆.
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2.5. Generalized second order Langevin dynamics

2.5.2.3 Efficiency of the MD and MC sampling

The GLE with noise correction is very convenient with respect to the MC sampling with

Penalty technique introduced in Sect. 2.4.1. Let us briefly summarize the advantages of this

scheme

• The ionic forces provide an efficient way to generate global move.

• The noise correction technique allows to employ a large integration time step ∆, there-

fore we obtain less autocorrelated samples during the MD iteration scheme.

• Within GLE we are not forced to reduce the error bar on the total energy to order∼ kT,

therefore the computational saving per MD step is substantial.

These positive features lead to a dramatically improved sampling of the ionic configura-

tional space. Indeed, in Fig.2.8, the efficiency of the MD based sampling with respect to the

CEIMC technique -on the very same system- is clear, since we can afford a larger number of

global sampling updates. Therefore, within this MD-GLE framework we can obtain ergodic

and well equilibrated simulations.

In conclusion, this QMC-MD with noise correction provides an efficient framework for

sampling realistic systems and evaluate equilibrium properties. The noise correction tech-

nique provides a stable and efficient MD Langevin simulation. In Sect. 3.5.1 a systematic

study on the bias given by the finite QMC bin size NQMC is shown. The MD is very robust

against the noise fluctuations and quite small QMC bins can be used, i.e NQMC ∼ ] of vari-

ational parameters. Nevertheless, all the possible sources of bias in this ab-initio MD are

systematically controllable, namely

• On the electronic side, the trial wavefunction can be systematically improved, reaching

the complete basis set limit. In practice, within VMC, one has to carefully check that

the all observables of interest are converged. Moreover, in principle, one can check the

accuracy of the result with a fixed node DMC calculation.

• During the dynamics we must stay close to the Born-Oppenheimer potential energy

surface E(R). We can always increase the number of iteration steps of the optimization

procedure in order to meet this requirement. However, within QMC, we cannot pre-

cisely fulfill the BO constraint. Instead, we can only stay close to the potential energy

within an error that scales as 1/
√

NQMC. This bias can not be eliminated with the noise

correction technique. However, also this bias can be removed in the NQMC → ∞ limit.

In all the practical applications we can check that the BO surface is followed within an

acceptable error δEBO/atom < kT.
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Figure 2.8: Sampling efficiency comparison between GLE-MD and CEIMC. We plot the rescaled ionic

positions -projected on the xy plane- sampled during a CEIMC simulation (red points) and a noise-

corrected GLE one (green line). For sake of visualization we plot the dynamics of only one ion out

of the 54 hydrogen system in the case of the GLE-MD. The different performance of the two schemes

is clear. In the CEIMC simulation[91] we observe only small vibrations around the equilibrium po-

sitions, therefore much longer simulations are necessary to equilibrate the system. On the contrary,

the GLE-MD provides a much more efficient sampling in this case. The liquid hydrogen system is

simulated at temperature T = 600K, and at density rs = 1.35.

• The finite time step integration error of the MD can be controlled by inspecting the

limit ∆→ 0. This error is still present in the noise correction technique, altough can be

effectively reduced. Notice that, we cannot employ a very small ∆ since we have a finite

computational time, i.e. we can afford a finite number M of MD iteration steps, and the

total integration time M ∆ must be larger than the equilibration time of the system in

order to sample correct equilibrium properties. Indeed we experienced that, the lack of

equilibration introduces a major source of errors in the MD that can substantially bias

the outcomes of the simulation.

A final remark on the unit of measure of the LD. Notice that in the above Langevin equa-

tions we have assumed that all the masses of the particles are set to unit values in atomic

Rydberg units, namely twice the electronic mass 2me is implicitly set to unity. In order to

sample the canonical distribution the actual values of the masses are immaterial, i.e. the

equilibrium properties does not depend on the mass. In order to match the usual atomic

units, for instance in the hydrogen case, the time units have to be scaled by the square root

42



2.6. A Langevin dynamics for the variational parameters

of the ratio between the proton mass and twice the electron mass (
√

mp/2me ∼ 30.3).

2.6 A Langevin dynamics for the variational parameters

In this short Section we introduce of a novel framework to include thermally excited states

in finite temperature electronic simulations. The method described in this Section is not used

to obtain the main physical result of this thesis. Nevertheless this framework, and the class

of problems on which it could be applied, may still be interesting and therefore is reported

in the thesis. At variance with respect to the previous Sections, the focus is on a generalized

first order Langevin equation, whose time discretized form looks much more complicated

than its second-order counterpart in the case of coordinate dependent noise correlator. All

the details are reported in Appendix A.

2.6.1 Introduction

The adiabatic approximation, typically assumed when performing standard Born-Oppenheimer

(BO) molecular dynamics, can become unreliable at finite temperature, and specifically when

the temperature is larger than the electronic energy gap between the ground state and the

low-lying excited states. In this regime, relevant for many important chemical processes, the

non-adiabatic couplings between the electronic energy states can produce finite temperature

effects in several molecular properties, such as the geometry, the vibrational frequencies, the

binding energy and several chemical reaction. In this Section we introduce a novel finite-

temperature non-adiabatic molecular dynamics, based on a novel covariant formulation of

the electronic partition function. In this framework the nuclei are not constrained to move

in a specific electronic potential energy surface. Then, by using a rigorous variational upper

bound to the free energy, we are led to an approximate partition function that can be evalu-

ated numerically. The method can be applied to any technique capable to provide an energy

value over a given wave function ansatz depending on several variational parameters and

atomic positions.

The calculation of finite temperature properties is one of the most important and chal-

lenging aspects of the numerical simulations. The basis of most finite temperature computa-

tional approaches is the Born-Oppenheimer (BO) separation of the system in the electronic

and nuclear subsystems, implying that at zero temperature the nuclei move in a potential en-

ergy surface (PES) provided by the electrons. Moreover, when studying systems at non zero

temperatures, it is a common practice to consider electrons in their instantaneous ground

state while the nuclei can be treated as classical particles following an ab initio finite temper-

ature molecular dynamics. This is the scheme followed in the previous Sections, as the force
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, which appears in the MD equations, is the gradient of the ground state total energy with

respect to the ionic coordinates (see Eq.2.25). These methods implicitly use also an adiabatic

approximation, because the BO approximation does not provide only one PES, but several

adiabatic potential energy surfaces (PESs), one for each electronic eigenstate. However the

nuclei are evolved only according to one adiabatic PES and the non-adiabatic coupling be-

tween adiabatic PESs is neglected. This approximation is reliable only if the electronic energy

gap is large, namely when the gap between the electronic ground state and the low-lying ex-

cited states is much larger than the thermal energy. If the temperature is high enough this is

not the case, and it is not correct to assume that the electrons are constrained into one adi-

abatic PES. This happens also at room temperature in many chemical processes, and effects

can be observed in several molecular properties, such as the geometry, the vibrational fre-

quencies, the binding energy and several chemical reactions. Moreover these effects can be

important also in many physical phenomena, such as the occurrence of magnetic or insulat-

ing phases below a critical temperature, where the electronic entropy cannot be neglected.

We aim to account for the possibility of electronic excitations by removing the adiabatic con-

straint forcing the electrons to remain, during the dynamics, only in a specific PES. This is

particularly important for QMC methods as, due to the statistical noise, it is extremely diffi-

cult to satisfy exactly the BO constraint. Following the BO derivation, by using the smallness

of the ratio me/M, the total partition function Z can be expressed in terms of an electronic

partition function Z[R] at fixed nuclei positions:

Z =
∫

dR Z[R] (2.93)

Z[R] = Tr exp(−HR/T) (2.94)

where T is the temperature (here and henceforth the Boltzmann constant is assumed to be

one and we neglet for simplicity the overall constant coming from integration of the atomic

momenta), HR is the standard electronic Hamiltonian, that includes also the classical ionic

contribution, and that depends only parametrically upon the atomic positions R. We are

assuming here that the temperature is high enough that quantum effects on heavy nuclei can

be neglected, so that it is justified to have taken the classical limit for the nuclei. Observe that,

within the standard BO approach, whenever the electronic gap is much larger than T, the

electronic partition function Z[R] in (2.94) can be approximated by exp(−E0(R)/T) where

E0(R) is the ground state energy of the hamiltonian HR; in other words a single adiabatic

PES is implicitly considered in this case.

In the following derivation we want to include the contribution of all the adiabatic PES

corresponding to the ground state and all excited states with an affordable computation, be-

cause, as emphasized before, considering only the electronic ground state PES (gsPES) may
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fail in several cases, even when we are in the limit of small me/M. For instance the occur-

rence of a broken symmetry phase often implies gapless electronic excitations in HR, and the

approximation Z[R] ∼ exp(−E0(R)/T) cannot be safely assumed. Other examples are coni-

cal intersections[92, 93], when, for some particular ionic positions, HR becomes gapless and

nearby the proximity between different (namely corresponding to low-lying excited states)

PES is possible. In these conditions a pure electronic ground state technique fails as the inter-

play between different adiabatic energy surfaces cannot be taken into account consistently.

2.6.2 Sampling the finite temperature electronic partion function

We consider the problem to estimate the finite temperature partition function of an electronic

system with N electrons and M atoms, where we assume in the following that, as discussed

in the introduction, the ions are classical particles, whose coordinates R appear just as simple

parameters in the electronic hamiltonian HR and are confined in a finite volume V. Therefore,

once the ion positions are fixed, we need to evaluate the electronic partition function:

Z[R] = Tr exp (−βHR) (2.95)

where β = 1/T. Our derivation applies for an Hamiltonian with a bounded spectrum de-

fined in a finite Hilbert space with dimension D. Generally speaking this is not a relevant

restriction as, for instance, in electronic structure calculation one can consider a finite dimen-

sional basis of localized orbitals around each atom. The basis and the dimension D can be

increased arbitrarily to reach the so called complete basis set limit, that describes a proper

continuous electronic system.

We work within the VMC approach (see Sect. 2.3.1) and with a general variational trial

wavefunction

ψ(~r) = J(~x) D(~x) (2.96)

The real variational parameters, that define the above wave function, are compactly denoted

by α ≡ {αi}i=1,...,p and, since all physical quantities do not depend on the norm of the wave

function, we consider the α−manifold of states:

|α〉 = |ψ〉
‖|ψ〉‖ (2.97)

The metric in this manifold becomes non trivial as, by a straightforward calculation, the

distance between two states |α〉 and |α + dα〉 is given by:

ds2 = ‖|α + dα〉 − |α〉‖2 = dαidαjSi,j (2.98)
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where summation over repeated indices is assumed, and S is a p × p matrix defining the

metric tensor of this rather non trivial space, described by p independent variational param-

eters (e.g. a subset of vi,j and ψij). The matrix S can be explicitly evaluated and depends only

on average first derivatives of the wave function with respect to the parameters α′s:

Si,j =
〈∂iψ|∂jψ〉
〈ψ|ψ〉 −

〈∂iψ|ψ〉
〈ψ|ψ〉

〈ψ|∂jψ〉
〈ψ|ψ〉 (2.99)

It defines a metric as it is strictly positive definite if all p variational parameters are indepen-

dent (implying indeed a non vanishing determinant |S| > 0). This matrix turns out to be

exactly the one used in several optimization techniques[53, 94], and can be computed also

for correlated systems by sampling the correlations of the quantities Oj(x) = 〈x|∂jψ〉
〈x|ψ〉 over the

configuration space {x} where electrons have definite spin and position, namely:

Si,j = 〈OiOj〉 − 〈Oi〉〈Oj〉 (2.100)

where the symbol 〈. . .〉 denotes average over a distribution Π(x) ∝ 〈x|ψ〉2, that can be sam-

pled by standard variational Monte Carlo. Eq. 2.95 can be also extended in the space α with

non trivial metric (see App. A), by using the invariant measure dαp
√
|S|, corresponding to

the metric tensor S: ∫
dαp
√
|S|〈α| exp(−βHR)|α〉

ZS
= Tr exp(−βHR) (2.101)

We refer the interested reader to the original paper, Ref.[95], for all the mathematical details

and the proof of the above equation.

Then, we can easily bound the exact electronic partition function Z[R], because, due to

the convexity of the exponential function, the expectation value of an exponential operator

over a normalized state |α〉 satisfies:

〈α| exp(−βHR)|α〉 ≥ exp(−β〈α|HR|α〉).

This immediately provides a rigorous lower bound ZQ for the partition function Z:

Z ≥ ZQ =

∫
dR
∫

dαp
√
|S| exp(−β〈α|HR|α〉)

ZS
(2.102)

and a corresponding upper bond FQ for the free energy F = −T ln Z :

F ≤ FQ = −T ln ZQ (2.103)

In this way it is evident that FQ represents an improvement to the standard practice to

consider only the lowest BO energy surface. In fact in this approximation only one state is
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assumed to contribute to the integral in Eq.(2.102), namely the lowest energy state of HR

within the ansatz given by |α〉:

EBO[R] = min
α
{〈α|HR|α〉} (2.104)

Indeed it is clear that F = minR {EBO[R]} only at T = 0, and it represents a very bad approx-

imation to F as long as the temperature is raised, whereas the approximate partition function

FQ approaches the correct large temperature limit −T ln(DVM) of the exact partition func-

tion, while remaining a rigorous upper bound for any T. In Ref.[95] we show in detail a

comparison between the approximated partition function ZQ here introduced, the exact and

gsBO ones, showing that our approximation turns out to be better than the gsBO one, above

a temperature T∗, that remains meaningful in the thermodynamic limit.

We sample this partition function by means of a first order Langevin equation for the

variational parameters α. Such equation of motion turns out to be quite complicated in the

first order case, as having a coordinate-dependent diffusion matrix, which is related to the

metric tensor S, introduces computationally expensive drift-diffusion terms (see App. A).

If we couple the Langevin equation for the variational parameters with the one for the

nuclei we obtain the set of MD equations which one can integrate numerically in order to

simulate realistic systems taking into account electronic entropy. In Fig. 2.9(a) we show that

in the T → 0 limit, this MD correctly reproduces the ground state Born-Oppenheimer ap-

proximation (see App. A for details).

2.6.3 Results and discussions

This kind of dynamics should behave differently with respect to the standard BO-MD one

when the temperature is raised and for T > T∗ should be more realistic, because corre-

sponding to a more accurate upper bound of the exact free energy F. In Fig.2.9(a)) we limit

the study of the average bond length in a range of temperatures smaller than 3000 K be-

cause, above this value, first dissociation events start to appear during the simulations. This

temperature is in good qualitative agreement with low pressures experiments[96]. Roughly

speaking the dissociation probability depends on the ratio between the thermal energy T

and the depth of the free energy well ∆U through the Boltzmann weight[99] exp(−∆U/T)

within the assumption that excited electronic eigenstates are well-separated in energy from

the ground state. There are instead examples[100] in which BO approximation breaks down,

particularly near the transition state of a chemical reaction. In fact, as the reaction coordi-

nate r increases, the energy gap between the ground state and the first (antibonding) excited

state becomes smaller[101], for example when r > 4 a.u. this quantity becomes smaller than

8000K. Therefore large fluctuations in the bond length, certainly occurring at large tempera-
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Figure 2.9: a. Bond length r as a function of temperature. The range of temperatures is well below the

electronic gap ∼ 0.17 Ha (see Fig.A.1(a)) and therefore the expected exact value is the gsBO one eval-

uated by eq. (A.16) (black line). Red points are obtained by the MD coupled equations (A.10,A.14).

Data are in agreement with the predicted values.

b.Bond length r as a function of simulation time at a temperature of T = 8000 K. Coloured points

(red, green and blue) correspond to simulations performed with the dynamics presented in this work,

while the grey solid ones are obtained with a DFT- first order Langevin gsBOMD (the finite temper-

ature BOMD, defined with the fractional occupation[97, 98] yields qualitatively similar results). The

time step used in the integration of the equations is ∆N = 0.1 Ha−1 and points are plotted every 100

iterations. The dashed line indicates the distance r∗ such that the energy gap between the ground state

PES and the first excited one becomes smaller than T. All the CLD trajectories show escape events

while the DFT one describes a stable molecular configuration up to 20× 104 Ha−1 of simulation time

(not shown).
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2.6. A Langevin dynamics for the variational parameters

tures, are in principle not well described under a BO scheme. Since by definition, an atomic

dissociation requires to sample correctly events with large r, we expect to find differences

between the standard BO-MD and the dynamics generated by (A.10,A.14), at large enough

temperatures. In Fig.2.9(b), we observe that the probability of dissociation is enhanced in

our dynamics, which can take implicitly into account also the effective repulsion due to the

antibonding state. As expected, this is in sharp contrast with a DFT-BO dynamics obtained

using the QUANTUM ESPRESSO package[88, 102]. In the latter dynamics large fluctuations

in r do not lead to dissociation, as is partially shown in fig. (2.9(b)), and the H2 molecule

remains stable even when the finite temperature DFT is adopted with the usual practice to

work with fractional occupations of the Kohn-Sham energy levels. Indeed no escape events

occur within DFT BO-MD, even for long simulations. Moreover in order to compensate the

well known overbinding error[37] of the local density approximation (LDA), we have in-

creased the temperature by a factor proportional to the LDA energy barrier (∼ 1.40 times

larger than the exact one), and observed no qualitative changes in the trajectories, always

confined around the minimum energy value. It is clear therefore that, quite generally, the

BO-MD greatly underestimates the evaluation of the reaction rate if, for instance, a mean

first-passage time[99] analysis is performed. However the time scale used in this first order

Langevin dynamics does not have a real physical meaning and accurate transition rates can-

not be computed without extending the method to second order dynamics, by taking into

account also the mass of the particles.
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Chapter 3
High pressure phase diagram of liquid

hydrogen

In this Chapter we introduce the main physical results of this thesis. The focus will be on the

transition between the molecular and the atomic hydrogen fluid at high pressure. The con-

nection between this liquid-liquid transition (LLT) and the insulator to metal (IM) transition

will be also discussed. First we review the state-of-the-art experimental and numerical find-

ings on the hydrogen phase-diagram, with particular reference to the liquid phase. Next we

describe the results of our ab-initio molecular dynamics, previously described in Chap.2. We

find that the LLT from a molecular fluids towards a fully dissociated one appears at higher

pressures than previously believed. These results are very different from the ones obtained

in previous simulations within the DFT and QMC framework (see Sect. 2.2 and Sect. 2.4.1).

Nevertheless our picture about this elusive transition can be reconciled with some experi-

mental evidences, in which is the conductivity the observable that has been measured and

not the molecular dissociation fraction. Indeed, we believe that the molecular-atomic LLT

and the IM transition, which may be only a crossover at finite temperature, are two different

kinds of phenomena and they may take place far apart in the liquid phase diagram.

3.1 Introduction

Since almost the beginning of the 20th century, extensive experimental as well as theoretical

efforts have been devoted to understand the high pressure phase diagram of hydrogen, the

simplest possible condensed matter system in nature. Indeed hydrogen can be viewed as a

prototypical system showing an IM transition, as a lattice with one atom at each site is the
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3. High pressure phase diagram of liquid hydrogen

simplest realization of the half-filled Hubbard model[103], the minimal -but still unsolved1-

model which takes into account electron correlation. However hydrogen is very far from

a simple material, as the study of its high pressure phase diagram remains a fundamental

challenge for experimental and theoretical techniques. Apart from its importance as a model

system, hydrogen is the most common substance in the universe and the understanding

of its equilibrium properties, when compressed, is crucial for a satisfactory description of

many astrophysical bodies. Indeed the location of the IM transition in the interior of the

giant planets, such as Jupiter and Saturn, clearly has influences on their magnetic fields,

convection and even their chemical composition[104]. Materials deep within these planets

may behave very differently from their low pressure forms as a pressure of the order of

hundreds2 of GPa’s will likely modify the electronic structure of a compound. Indeed the

internal energy change ∆E in a small volume of molecular size V = 10 Bohr3, in achieving a

pressure P = 100 GPa is comparable to typical electronic energies, as ∆E = P V ∼ 1 eV.

The low pressure and temperature form of hydrogen is molecular due to its strong cova-

lent bond, and the usual phases are described in terms of these molecules, i.e., solid, liquid,

and gas molecular phases. In the early days, it was conjectured by Wigner and Huntington[7]

that, upon high pressure, this stable entity – the H2 molecule – can be destabilized, giving rise

to an electronic system composed of one electron for each localized atomic center, namely, the

condition that, according to the band theory, should lead to metallic behavior. According to

them, a pressure of 25 GPa would have been sufficient to break the molecule. Instead, all the

attempts to produce metallic hydrogen in the solid have not been successful yet. Indeed at

low temperature, this material undergoes a number of phase transitions with increasing den-

sity always within the molecular phase and it remains insulating up to 360 GPa, as observed

with a recent (2012) experiment[6]. This picture is confirmed by almost all the experiments

on the solid phase[8, 9], with the exception of the room-temperature claim of metallization

by Eremets & Troyan (2011)[105] at 260 GPa. Nevertheless it is likely[106] that this reported

transition is instead the first experimental observation of a new phase boundary between the

widely stable phase III and a new phase IV of solid hydrogen[107]. This new phase, which is

found to be a mixed molecular and atomic structure, was subsequently better characterized

by other experiment[108, 6, 107] in 2012 and 2013.

This phase is the fourth solid phase of molecular hydrogen experimentally discovered,

although only the phase I is known in its details. Phase I has a hexagonal closed-packed

structure with freely rotating molecules. Phase II possesses some degree of orientational or-

der (the broken symmetry phase) and may differ from the lattice symmetry of phase I and

1in dimensionality greater than one.
2a typical internal pressure in the core of Jovian planets is of the order of TPa’s
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exists at temperatures below 135 K and up to 160 GPa. Phase III appears at higher pressure,

is separated from phase II by an almost vertical phase line from 0 to 125 K at 155 GPa, and the

transition between the two is characterized by a large discontinuity in the vibron frequency.

Phases I, II, and III coexist at a triple point at 125 K and 155 GPa. A precise characterization

of the crystal structure of phase III is still missing. Numerous structures have been predicted

for this dense molecular phases, mainly using a random search technique[109], but no con-

sensus has been reached as within static DFT calculation[109] (i.e. ignoring protonic zero

point motion) the candidate structure is the C2/c while a fairly recent calculation with DMC

suggests the P63/m structure to be energetically favourable[110]. Finding theoretically the

location of the IM transition depends on the exact determination of the crystal structures,

as different lattices lead to different estimated band-gap closure pressures. Moreover, a re-

cent systematic study [18] clearly demonstrates the inadequacy of DFT calculations for solid

molecular hydrogen, as the quantitative predictions strongly depends on the choice of the

functional used. In conclusion, at zero temperature, any convincing evidence of metallic

hydrogen has been found and prediction based both on experimental data and numerical

calculations seem to push the metallization pressure above the 400 GPa, i.e. pressures still

far from experimental reach.

On the other hand, evidences for a IM transition at high temperatures have been reported[10,

11] altough a clear understanding of its underlying mechanism is still missing. At band the-

ory level, materials can be either perfect metals or perfect insulator at T=0. For metals, any

finite resistivity arises from deviations in the crystal lattice structure, such as impurities, de-

fects and phonons, so that one could intuitively expect that in a disordered liquid the onset

of the IM transition would be even further delayed. Instead, in Ref.[10] Nellis and cowork-

ers reported a continuous transition from a semiconducting to metallic fluid at 140 GPa, i.e

at pressures for which the solid is still in the insulating phase. They also estimate that the

metallization occurs still in a partially dissociated but mainly molecular fluid, as the calcu-

lated [111] dissociation fraction is around 10 %. The temperature of this shock-compression

experiment was not measured, but only estimated to be in the range 2500-3000 K. A simi-

lar conductivity behavior is observed also in a similar experiment by Fortov et. al.[11]. In

this case, a claimed first-order transition is instead reported based on the observation of a

“jump” of the density as a function of the pressure. However, their measurements were

sparse in density and a continuous transition can not be ruled out from the data. To com-

plete the experimental data on the liquid phase diagram of hydrogen at large pressures we

report also a laser heating experiment, using this time a static pressure technique. In this

work, Silvera and coworkers[12] offer an indirect evidence for a first order transition be-

tween two “phases” by observing a plateau in a temperature vs. laser power curve. Let us
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3. High pressure phase diagram of liquid hydrogen

call these three experimental references with W1996 (Ref. [10]), F2007 (Ref. [11]) and D2013

(Ref. [12]). For the sake of completeness we cite also a forty year old russian experiment[112]

on this topic that is not in agreement with F2007 as it shifts the transition to higher pressures.

Many other experiments exist on dense hydrogen, but they are mainly on the solid phase

and the melting line between the molecular solid and the liquid, i.e. not very relevant on the

liquid-liquid transition explored in this thesis. We refer the reader to a recent review[113] for

a more complete experimental literature on hydrogen. This P-T phase diagram is reported

in Fig.3.1.

Until now, since experiments are not very clear about this transition, numerical simu-

lations would be very welcomed, given also that the range of pressures and temperatures

accessible with current experimental setups is limited. One first remarkable success of nu-

merical simulations was in predicting the existence of a re-entranting melting line (Scan-

dolo, 2003[13] with Car-Parrinello MD) and then its location in the phase diagram (Galli and

coworkers, 2004[14]). The predicted maximum in the melting line was later confirmed ex-

perimentally. The CPMD simulation with DFT-GGA energy functional by Scandolo[13] is

also the first on the liquid-liquid transition. He found a first-order phase transition due to

large density fluctuations at T = 1500 K and P = 125 GPa with a 6% change of specific volume.

He observed a rapid molecular dissociation and metallization occurring at the same point.

This result may be qualitatively in agreement with W1996 provided that the first-order line

ends in a critical point somewhere below 2500-3000K. Quantitatively, the pressure seems to

be underestimated by ∼ 50 GPa with respect to W1996. Evidences for a first order transition

came from other CPMD simulations[14, 114] while a subsequent BOMD calculation found a

crossover instead[66]. The latter result is probably due to finite size effects; indeed a rather

small system of 128 atoms has been employed within DFT with Brillouin zone k− integra-

tion. A few years later, the possibility for a first order transition was instead reported by the

same authors[15] by employing a 256-atom DFT simulation at the Γ point. This time the LLT

was characterized by looking at the average lifetime of the molecules.

Ceperley and coworkers have been particularly active in numerical simulations on the

LLT, using both CEIMC and DFT (see Sect. 2.2 and Sect. 2.4.1). In a first CEIMC simulation[21]

a crossover between the molecular and the atomic liquid was found. They observed also a

surprisingly difference between VMC and Reptation[115] QMC methods. Nevertheless it

is likely that this issue, as well as a the strong hysteresis effects reported are due to a non-

optimal choice of the trial wave function. Later, a clear evidence for a first order transition

was found within both CEIMC and DFT-BOMD[16]. LLT lines obtained by CEIMC and

PBE-DFT only differs quantitatively by less than 50 GPa. They found that both the density

vs pressure curve as well as the conductivity (computed by the Kubo-Greenwood formula
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3.2. Insulator to metal transition in liquid hydrogen

within DFT) undergo a discontinuous jump across the transition. Given that a critical point

is found at 2000 K, these results are not qualitatively in disagreement with W1996 but still

the pressure appears to be underestimated by 50-100 GPa. Notice that the latest experimen-

tal measure reported above as D2013[12] -published in April 2013- is in excellent agreement

with these results. Unfortunately, a conclusive word on this topic is still missing as two

month before this date, a new study by Ceperley and coworkers appeared[17]. In this 2013

study, by employing both non-local DFT functionals and including quantum proton effects,

they shift the LLT by more than 100 GPa (notice that the shift between PBE and these new

functionals, within the classical proton framework, is indeed greater than 150 GPa’s). This

new line is now in very good agreement with W1996 but not with respect to the almost si-

multaneously published D2013 reference (see Fig.3.1). For these reasons, we believe that our

QMC-MD simulations are timely and may give insights on these complicated phenomena.

3.2 Insulator to metal transition in liquid hydrogen

In the 1996 Sir Nevill Mott himself wrote: “I’ve thought a lot about ’What is a metal’ and i

think one can only answer the question at T=0. Thus a metal conducts while a non-metal

doesn’t”. At finite temperature, characterizing a metal becomes more difficult, as the rais-

ing of temperature thermally excites electrons into the conductive state and the conductivity

becomes temperature dependent. Nevertheless, a practical definition of a metal is that of

a material with a conductivity in a metallic range. This definition applies for the measured

metallization at 140 Gpa made by Nellis and coworkers[10, 116]. They observed a change

in the slope of the resistivity as a function of the pressure at this value. The change in

slope is indicative of the transition of the metallic state. In this region the energy gap is

smeared out thermally and by the fluid disorder, and the conductivity remains almost con-

stant, i.e. weakly sensitive to the pressure after the 140 Gpa’s. The conductivity measured in

this regime is of 2000 (Ωcm)−1, that is a value typical of fluid alkali metals Cs and Rb at 2000

K.

A very important question to be addressed is why the metallization seems to occur in the

high temperature fluid phase at lower pressures than in the low temperature solid, for which

any clear evidence of metallization has not been found yet. This is probably due to the differ-

ent protonic structure of the two phases. First of all, the electronic gap is reduced when the

molecule is thermally stretched. This is an intramolecular effect that was firstly proposed by

Nellis and Aschroft[117, 118] and demonstrated employing a simple Pa3 model lattice struc-

ture. Moreover, thermal fluctuations in the liquid may cause molecules to approach closer to

one another than in the low temperature solid. These structures, that are certainly sampled
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Figure 3.1: Phase diagram of dense hydrogen. All the relevant experimental and numerical references

are included up to 2013. Black solid lines indicate experimental boundaries between the molecular

liquid and the molecular solid, the latter consisting of four different solid phases denoted by I, II,

III, and IV. Solid points are experimental measures on liquid hydrogen[10, 12]. Open symbols with

dashed curves correspond to the liquid-liquid transition (LLT) obtained with latest simulations. Red

circles and green squares refer to Density Functional Theory (DFT) calculations with different func-

tionals (PBE and vdW-DF2 ) and quantum protom effects [17] while orange triangles refer to Coupled

Electron-Ion Monte Carlo (CEIMC) [16].

during the fluid dynamics, may correspond to lower energy gaps structures with respect to

the -almost- fixed lattice structure of the solid. Indeed, at high temperatures, protonic con-

figurations in which the electronic overlap between neighboring atoms is sufficiently large

to allow the hopping, are realized more frequently. In the cold solid instead, molecules are

more rigid and the electrons are localized around them. This behavior is similar to what

happens in fluid iodine. I2 is a molecular system which experiences the IM transition by

bandgap closure due to thermal smearing at lower pressure in the fluid than in the solid.

Indeed room temperature solid I2 becomes metallic at 16 GPa, while the liquid at only 3 GPa
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3.2. Insulator to metal transition in liquid hydrogen

at 1000 K[116].

Apart from these qualitative discussions, a clear picture about the IM transition in hydro-

gen is still missing. Summarizing, the metallization may take place in the following ways,

the first two being the most plausible mechanisms:

• 1. Bandgap closure within the molecular phase. In this picture, the gap Egap closes

continuously and carriers are thermally excited into the conduction band. At a certain

density ρ, when kT ∼ Egap(ρ) the transition between a semiconducting and a metallic

liquid at finite temperature occurs. This mechanism is consistent with Ref.[10] where

the conductivity is supposed to be due primarily to electronic excitations, with a small

fraction of molecules dissociated. Ashcroft also suggested in Ref.[119] that the conduc-

tion may be caused by delocalized electrons around stable H+
2 ionized pairs.

• 2. Structural phase transition. Within this mechanism the IM transition coincides with

the molecular-atomic dissociation transition. The IM predicted by Wigner and Hunt-

ington is within this class, even if appears now irrealistic in the low-temperature solid

regime. To date, no evidence of pressure induced dissociation in the solid has been ob-

served. This picture is consistent with Ref.[16]. Nevertheless, within these simulations,

the observed jump in the conductivities looks more abrupt than the one regarding the

dissociation fraction at the transition. Thus it is unclear why a sharp first-order IM

transition arises from a smooth change in the dissociation fraction. Scandolo’s CPMD

simulations[13] instead show a clear jump both for the structural and the electronic

properties. One example of materials that undergo an IM transition driven by a struc-

tural change are Si and Ge, that becomes metallic upon melting[117, 118].

• 3. Mott transition and localization. This picture involves a IM Mott transition[120]

typical of an Hubbard model at half filling, plus additional complication given by the

disorder. This mechanism would be very interesting altough it is unlikely to occur. In-

deed, the experimental evidence of Ref.[10] suggests that metallization at finite temper-

ature occurs before the complete bandgap closing. A Mott IMT instead would require

that exists a structure for which the Egap = 0 with the system still being insulating.

Moreover, since liquid phases are disordered, an IM transition due to the Anderson

localization[121] can not be ruled out a priori. Indeed, the fluid motion, generates a se-

quence of random lattice structures, for which the Anderson IMT may occur, within

the Born-Oppenheimer approximation.

The goal of the numerical simulations that will be presented in the next Section is to

give insights about these different possibilities, as well as quantitatively locate the LLT in the
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3. High pressure phase diagram of liquid hydrogen

phase diagram. Since it is difficult to assess an IM transition without the possibility to cal-

culate the conductivity (we can only obtain the ground state within our QMC technique) we

will focus mainly on the LLT between the molecular and the atomic fluids. Electronic prop-

erties can be inferred by looking at the variational wavefunction for selected configurations

obtained from our QMC-MD. Notice that in the following we will always assume classical

protons, this approximation being justified in the range of temperatures studied, that is >

600 K[29].

3.3 Molecular dissociation at large pressure

To identify the LLT, we trace four isotherms in the range 600 - 2300 K, looking for a possible

singular behavior of the pressure and the radial pair distribution function g(r), in a wide

range of density. Simulations last long enough until thermalization is established. A typical

run at fixed density and temperature is about 2 ps long For each of the four isotherm, i.e.

600, 1100, 1700, 2300 K, we perform several simulations varying the density, with a mesh

increment of 0.01 (and possibly 0.005 near the transition) for rs. rs is the Wigner-Seitz radius

defined by V/N = 4/3π(rsa0)3 where V is the volume, N the number of ions, and a0 is the

Bohr radius. We indeed find a relatively small discontinuity, which appears to be clear also

at the highest temperature considered. Since the discontinuity in the pressure appears to be

rather small, it is extremely important to identify the LLT by looking also at the radial pair

distribution function g(r) for the ions. Notice that, close to the transition a fully molecular

phase is not stable, as a large fraction of pairs is found to be already dissociated (Fig. 3.2b).

A similar first-order behavior is also found by looking at the pressure as a function of tem-

perature at fixed density (see Fig. 3.3), i.e. by crossing the LLT vertically, along the isochor

having density rs=1.28.

In Ref. [29] all the pressure-vs-density and the g(r) plots for all the four isotherms con-

sidered are shown. Here we report the points in the phase diagram at which the LLT occurs

(see Table 3.1) The lower the temperature, the larger is the density (hence the pressure) at

which the LLT occurs.

Nevertheless, we observe the following common features for all the temperature considered:

• The transition appears to be first order as signaled by a discontinuity of the density as

a function of the pressure (Fig. 3.2a). This LLT is always accompanied by a rather clear

-altough small- jump of the molecular fraction. This can be traced by looking at the

g(r) profiles at different densities (Fig. 3.2b) and computing the average lifetime of the

pairs (Fig. 3.2c). The latter observable gives a quantitative information on how much

the molecules are stable during the simulation, even if in Langevin dynamics we can
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Figure 3.2: Liquid-liquid transition at 2300 K. (a) Pressure as a function of the density. A clear

plateau is visible around rs = 1.31− 1.32, indicating the first order transition. Error bars are of the

size of the symbols. This evidence is also supported by the discontinuous change with rs in the radial

pair distribution function g(r) (inset b). (c) Average lifetime of pairs as a function of pressure. A pair

is defined here as a couple of ions which are nearest neighbors and whose distance r is smaller than

a cutoff rc = 1.70 a.u. The shape of this curve is qualitatively similar for every reasonable choice of rc

although its amplitude may slightly vary. In the insets (d) and (e), radial pair distribution functions

for two different pressures (P) in the molecular fluid. The higher the pressure, the smaller is the

molecular peak and more coordination shells appear in the long range tail.

59



3. High pressure phase diagram of liquid hydrogen

0 2 4 6 8 10
r

0

0.5

1

1.5

2

2.5

3

3.5
g(

r)

T = 600 K
T = 1100 K
T = 1700 K
T = 2300 K

500 1000 1500 2000 2500
T [K]

430

440

450

460

P
 [G

P
a]

Figure 3.3: Radial pair distribution functions for different temperatures at fixed rs = 1.28 density.

The LLT along this isochor occurs between 1700 and 2300 K. Inset. Pressure as a function of the

temperature. The pressure increases as long as the fluid remains molecular. A drop in the pressure

occurs at the full dissociation.

T [K] P [GPa]

2315(10) 375(2)

1696(7) 468(7)

1122(30) 639(6)

563(10) 624(8)

Table 3.1: P-T parameters at which the first order LLT is observed. The error bars derive from the

fact that, at given density, both P and T are measured quantities. These errors clearly propagates in

the estimation of the LLT point in the phase diagram, as the two simulations on the right and on the

left of the LLT have clearly different pressures and may have slightly different temperatures. In other

words, we are following the isotherm lines along the phase diagram within an error of ∼ 10 K. The

error in the pressure can be reduced by adopting a finer density grid. These error bars are acceptable

for the present accuracy in the phase diagram.

not assign a precise meaning for such time scales.

• The first order transition separates two kind of fluids. A fully atomic liquid at larger

pressures and a partially dissociated molecular one at smaller pressures. So we are not
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3.3. Molecular dissociation at large pressure

speaking of a sharp first order transition between a fully atomic and a fully molecular

liquid.

• This first order LLT occurs at larger pressure than previously believed (see Ref.[13,

16, 17]). In particular we observe an unexpected persistence of the molecules at large

pressures, as the molecular fraction slowly disappears with increasing density but the

liquid becomes fully atomic only at very large pressures. For instance at 2300 K, the

transition is at 375 GPa.

We draw a phase boundary line in the phase diagram (Fig.3.8) putting together these

data. The first order character is evident also at the highest temperature of 2300 K, suggest-

ing that even at these temperatures this structural transition is not a crossover. Moreover the

shape of the LLT boundary is rather unusual and becomes a vertical line in the P-T phase di-

agram for T < 1100 K. By assuming that also at lower temperatures no solid phase emerges,

the dissociation pressure should remain almost temperature independent. Therefore, even

by considering an upper limit of 100 GPa shift to lower pressures, due to proton quantum

effects not included here (see Sect. 3.6), we predict that experiments should be done at least

above 500 Gpa to realize the Wigner and Huntington dream of hydrogen atomic metalliza-

tion.

So far we have considered properties that depends only on the protons and we label

the observed phases as molecular, mixed molecular and fully atomic liquids. The above picture

about the LLT seem to rule out the hypothesis number 2 in Sect. 3.2 concerning the insulator

to metal transition. Within this mechanism the IM transition is driven by the structural phase

transition and the IMT and the LLT would occurs simultaneously. Indeed our results are not

well consistent with this mechanism because

• a. The transition between the fully molecular and the fully atomic liquid is not sharp.

In fact there is not a clear discontinuity between a fluid made of molecules (that one

would consider as insulating objects), and a liquid made of unpaired atoms glued by a

sea of conduction electrons.

• b. If we identify the IMT with the LLT, then the IM would occur at very large pressures.

This would not be consistent with Ref.[10] in which a crossover (within the molecular

phase) between the nonmetal and the metallic fluid is found at 140 GPa and around

2000 K. Our simulation instead predicts that the LLT is first order at 2300 K and is

located at 375 GPa.

For this reason we believe that the metallization at finite temperature takes place within

the mixed molecular phase, well before the first order structural phase boundary.
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3. High pressure phase diagram of liquid hydrogen

3.4 A possible IMT within the mixed molecular phase

To investigate the occurrence of a possible IMT we look at the electronic wavefunction. We

cannot calculate directly the conductivity and the electronic gap between the ground state

and the excited states as it is accustomary in DFT, because we have only the ground state

ψ0(R) at each configuration R sampled during the dynamics. Nevertheless the VMC wave-

function contains a large amount of information on the electronic properties.
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Figure 3.4: Density matrix radial decay DM(0, x) as a function of the unit-cell rescaled distance x =

r/L for different densities {rs=1.28, 1.32, 1.40, 1.56, 1.70 and 2.0} at the T=2300 K isotherm. Notice

that the smaller is the density -that is inversely proportional to rs- the faster is the decay and the

oscillations are more damped. The LLT occurs at rs=1.31-1.32. Notice that DM(0, x) does not change

qualitatively at the two end of the first order LLT. For the sake of clarity we plot in green the data

which correspond to a fully molecular liquid, in blue the partially dissociated fluid and in red the

fully dissociated one. We take averages from 4 equilibrated configurations at each given density.

In 1964 Kohn first claimed that insulators and metals differ in their ground state and

not only in the excitation spectrum[122]. Even before the system is excited by any probe,

a different organization of the electrons is present in the ground state and this is the key

feature discriminating between insulators and metals. He gave evidence that localization of

the electronic ground wave function implies zero dc conductivity, and therefore characterizes

the insulating state. The locality properties of solids within independent particle theories

have been widely studied[123, 124]. It was shown that for insulators the density matrix

decays exponentially. The rate of the decay is related to the size of the energy gap in the
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3.4. A possible IMT within the mixed molecular phase

band-structure: a larger gaps corresponds to a faster decay. In contrast, for a metal at zero

temperature, the decay is much slower, namely power law.

We can observe this property by considering the molecular orbitals ψi that define the

determinantal part of our wavefunction (see Sec.2.3.2.1). Let us now introduce the density

matrix as

DM(r, r′) =
N/2

∑
i=1

ψi(r)ψi(r′) (3.1)

where N is the number of electrons. The abovementioned decay of the density matrix can

be seen by looking at the r → ∞ behavior of the function DM(0, r), where r = |r|. The finite

size of the system makes the task to quantitatively distinguish between different asymptotic

behaviors very hard. Nevertheless a qualitative change of the DM(0, r) shape as a function

of the density can be observed in Fig.3.4.

Notice that, to distinguish between a metal and an insulator, it is sufficient to consider

the (uncorrelated) determinantal part of the wavefunction as our short-range Jastrow factor

(see Sect. 2.3.2.2) is not able to turn a metallic uncorrelated state into an insulating one[125].

To obtain a more quantitative information about the electronic localization we compute

for each density the following quantity

|DM| :=
1
M

M

∑
i=1

∫
dr |DM(0i, r)| (3.2)

namely, the integral of the absolute value of the density matrix DM(0, r), averaging over M

different origin points inside the simulation cell. We take average over 4 equilibrated pro-

tonic distributions at each density and we observe the behavior of this |DM| as a function of

the pressure for two isotherms: 2300 and 600 K. Due to the different DM decay behaviors,

we expect a divergence of this quantity in the metallic phase. Since the system is finite, a dra-

matic discontinuity is hard to observe, but still, some changes should be visible passing from

an insulating to a metallic phase. Notice that the DM(0, r) decay functions are characterized

by Friedel oscillations, i.e. having negative and positive contributions. The wavelength of

these oscillation is controlled by the density of the system but the disorder may introduce

random shifts. Therefore, we take the sum of the moduli of the DM(0, r) in order to avoid

the zero averaging property, which is likely to happen if one samples over disordered con-

figurations. The results are plotted in Fig.3.5.

As expected the |DM| values are larger at high pressures, at which the system should be

metallic. At 2300 K we note a change in the slope (see Fig.3.5(a)) at∼ 130 GPa, before the real

first order transition at 375 GPa. We recall that this is an indirect information on the energy

gap. In other words, the gap always decrease with the pressure, but with a different rate

beyond the 130 GPa. This value, although its precise connection with the conductivity is still
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3. High pressure phase diagram of liquid hydrogen

missing, is surprisingly in agreement with the experimental minimum conductivity value

at 140 GPa and ∼ 2500 K reported in Ref.[10]. Moreover this is also in agreement that the

IM crossover occurs within the molecular phase, as claimed by the authors. In our picture,

a real first order transition happens at larger pressure (250 GPa’s later) when the complete

atomization of the fluid is reached.

At the lower temperature of 600 K the situation changes slightly (see Fig.3.5(b)), as we

observe a more clear change of the |DM| at ∼ 440 GPa, namely 180 GPa’s before the LLT in

which the complete atomization is reached. If we identify this jump with the IMT, then the

metallization would occur again in the mixed-molecular liquid at ∼ 440 GPa and 600 K. In

conclusion, provided that this discontinuity of the density matrix integral is a fingerprint of

the IMT, then we observe that

• The IMT occurs before the complete atomization of the fluid, which we label as the LLT

• At 2300 K, this value is in agreement with Ref.[10], both on the pressure value and the

mechanism that is supposed to drive the IMT.

• The distance in the phase diagram between the IMT and the LLT is smaller at 600 K

than at 2300 K. This is consistent with the fact that at 0 K the two transition should

merge, provided that a liquid phase is stable even at this temperature.

Looking more carefully at the simulations at 600 K, we link the observed jump of the

|DM| at 440 GPa with a qualitative change in the g(r)’s profiles. Indeed, starting from 440

GPa, the first minimum of the g(r) ceases to be exactly zero and becomes finite. Fluids

at densities smaller than rs=1.28, show a clear separation in the range of the accessible H-

H distances, while all the possible interatomic distances are allowed3 when compressed at

more than rs=1.27 (see Fig.3.6(a)). Exactly between these two endpoint the discontinuity of

the |DM| occurs. As the density is increased, the region corresponding to the first minimum

becomes more and more populated while the height of the first maximum decreases. At

the LLT density, the first molecular peak completely disappears (see Fig.3.6(b)). Combining

these two observations, we argue that the electronic distribution is more sensitive to the

former type of change in the protonic distribution, rather than to the complete atomization.

In other words, the qualitative difference is between a fluid in which the molecules -

on which the electrons are localized- are somewhat defined (the first maximum of the g(r)

being clearly separated by the bulk) and a fluid in which there is no more a forbidden region

of interatomic distances. These protonic structures may favour the electron hopping between

the elongated pairs and the system may become metallic at this densities.

3clearly, beyond the equilibrium 1.40 Bohr distance.
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Figure 3.5: |DM| as a function of the pressure for two different isotherms. In both cases we can

observe a change well before the first order LLT, signalled by a discontinuous behavior of the density

as a function of the pressure. a. T=2300 K. We observe a change in slope of the |DM| at ∼ 130 GPa,

before the greater discontinuity which occurs at 375 GPa, i.e. at the same pressure of the first order

LLT (orange arrow). b. T=600 K. This time the discontinuity of |DM| before the LLT is much more

clear at ∼ 440 GPa (violet arrow). The observed LLT between the mixed molecular and the atomic

liquid is instead at ∼ 620 GPa (orange arrow).
65



3. High pressure phase diagram of liquid hydrogen
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Figure 3.6: a. g(r)’s profiles at densities near the |DM|’s jump of Fig.3.5(b). The proposed IMT is

between rs=1.28 and 1.27. Notice the different shapes of the first minimum before and after the IMT.

Moreover also the first peak position shifts with the pressure. As the density increases the molecules

becomes more elongated as they feel more the attraction of the surrounding atoms. b. Evolution of

the amplitude of the first molecular peak (black points) and the first g(r)’s minimum (red points) as a

function of the pressure. At the proposed IMT, all the possible distances ranges beyond the first peak

becomes populated. At the same time, the amplitude of the first maximum decrease faster. These two

quantities coincides -by definition- at the complete atomization of the fluid.
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3.4. A possible IMT within the mixed molecular phase

3.4.1 Molecular lifetime and hopping

The molecular lifetime is the dynamical observable which is directly related to the particles

density g(r) around the first minimum. Altough our Langevin dynamics does not, in princi-

ple, allows us to compute dynamical quantities we can still infer interesting properties about

the nature of the liquids observed. For example, let us compute the number nr of distin-
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Figure 3.7: Recombination rate hr=1.6 as a function of the pressure and for two isotherms, T=2300

K (600 K) with empty squares (full circles) points. Blue and orange lines are guides to the eye to

distinguish the two phases, namely the partially dissociated (blue) and the transition towards the

complete atomization (orange). In the inset, the average molecular lifetime, with cutoff r = 1.6 Bohr

(see text) as function of the pressure, at 600 K. The lifespan is measured in % with respect to the total

time of observation (400 fs). All these data refer to the 256-atoms system.

guishable particles which establish a nearest neighbor link to a given atom i during a given

simulation time ∆t. Namely, for each atom i we count how many different hydrogens j form

a paired state with i during the simulation. In order to define a molecule we choose that

the i − j bond must be the shortest among all the possible i − j distances and shorter than

a reasonable cutoff radius r. For a pure dense atomic liquid, the atoms establish transient

bonds with a very large number of particles during the simulation. Conversely, in a pure

molecular liquid this number should be exactly nr = 1, as all the molecules remain stable

along the simulation and there is no proton exchange between the molecules or umpaired

atoms in the liquid. Therefore, the quantity hr, defined as

hr = nr − 1 (3.3)
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3. High pressure phase diagram of liquid hydrogen

counts how many new i − j bonds are formed during a given time. This hr is an hopping

rate and is directly related to the probability of molecular breaking. We calculate this rate

for the T=2300 K and T=600 K isotherms and adopt a cutoff of r = 1.6 Bohr (the results

does not depends qualitatively by the particular choice of this cutoff). In Fig. 3.7 we observe

that hr=1.6 becomes nonzero exactly at proposed IMT pressures (pink arrows). Therefore, the

insulator to metal transition occurs when the fluids are sufficiently compressed to experience

bond breaking and reforming, between the short-lived molecules. These critical pressures

depend on the temperature, and, as expected, the larger is the temperature the smaller is the

pressure at which the onset of molecular dissociation is observed. The hr=1.6 rate increases

almost linearly at larger pressures and finally diverges near the LLT pressures, namely at the

complete dissociation.

These two critical pressures, namely the IMT and the LLT pressures, define the bound-

aries of the mixed-molecular liquid phase. In this liquid, although the (static) average num-

ber of molecules is constant, the atoms participating to the bonding change throughout the

simulation, namely the atom i replaces several times the j molecular partner in a given time

but the total molecular fraction remains constant. A typical recombination rate value for

this liquid is of the order of hr=1.6 ∼ 0.1 fs−1, which means that the molecular lifetimes

are ≈10−14 fs, i.e, of the order of few molecular oscillations. This value is qualitatively in

agreement with an old tight-binding MD simulations[126]. We can also directly compute the

molecular lifetime as the average lifespan of bonds shorter than a cutoff r. This observable

takes into account not only the recombination process but also simple atomization events.

We plot the lifetime as a function of the pressure at 600 K in the inset of Fig. 3.7. The quali-

tative distinction between the three fluids is again evident. The liquid with mixed character,

made of short-lived molecules, appears between 440 and 620 GPa.

Finally, we update our high pressure phase diagram in Fig. 3.8 with these data concerning

the IMT and the boundaries of the mixed atomic-molecular liquid. Notice that our proposed

IMT lines is surprisingly in agreement with the LLT lines obtained by DFT-HSE simulations

with quantum protons of Ref.[17], taking also in account that the zero point motion should

shift the LLT towards smaller pressures as the temperature is decreased. However, this may

be only a coincidence because the authors of Ref.[17] claim that the IMT and the LLT transi-

tions coincide along that line in the phase diagram.
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Figure 3.8: P-T phase diagram of hydrogen. Black solid lines indicate experimental boundaries be-

tween the molecular liquid and the molecular solid, the latter consisting of four different solid phases

denoted by I, II, III, and IV as in Ref. [6]. Colored symbols with dashed curves correspond to the

liquid-liquid transition (LLT) obtained with latest simulations and experimental points. Red circles

and green squares refer to Density Functional Theory (DFT) calculations with different functionals

(PBE and vdW-DF2 ) and including proton quantum effects [17] while orange triangles refer to Cou-

pled Electron-Ion Monte Carlo (CEIMC) [71, 72]. Blue diamonds correspond to the LLT estimated in

this work. Blue triangles are instead placed at the proposed IMT points, obtained by looking at the

density matrix discontinuities. The (black dotted) LLT lines divides the completely dissociated fluid

(on the right) from the molecular/partially dissociated fluids (on the left). The (blue dashed) IMT

line separates the insulating (on the left) from the conducting liquid (on the right). The shaded area

indicates therefore a partially dissociated metallic molecular fluid.
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3. High pressure phase diagram of liquid hydrogen

3.4.2 Jastrow factor and localization studies

To investigate further how the electronic properties change with the pressure and their pos-

sible relation with the IMT we analyze more the variational wavefunction, looking at the

behavior of the Jastrow factors. First of all, we look at the two body Jastrow factor defined in

Sect. 2.3.2.2: Its specific functional form reads

u2(r) = (1− e−br)/2b (3.4)

Therefore, the electron-electron repulsion becomes important if the range of the interaction

τb := 1/b is large. In Fig.3.9 we plot the dimensionless quantity τb/L a sa function of the

pressure. Interestingly we found that this function is not monotonic with P, rather it shows a

maximum when the liquid is mixed molecular - atomic. Nevertheless, such behavior is quite

smooth and therefore the two body Jastrow - which is certainly important for the overall

accuracy of the calculation - does not play a key role as reaction coordinate for the IMT.
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Figure 3.9: τb/L as a function of the pressure at T=2300K. This quantity, which tell how much is

important the 2-body electron-electron dynamical correlation, is slowly varying in the all range of

pressures. We take average over 5 equilibrated configurations at each pressure.

A similar situation occurs for the 3-body jastrow factor. In Fig.3.10 we plot the distri-

bution of the f values of Eq.2.21 for six very different densities. This quantity is directly

connected with the on-site repulsion of two electrons which are localized on the same ions.

We do not observe dramatic changes of these parameters along the transition.

Consider now the highest occupied molecular orbital ψ = ψHOMO(r) obtained with a

DFT-LDA calculation performed on our VMC-MD equilibrated protonic configuration. A
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Figure 3.10: Histograms of the fνa 3 body Jastrow parameters for six densities at T=2300 K. We take

average over 5 equilibrated configurations at each density. Since the 3-body Jastrow is expanded in a

localized 2s basis (cf. 2.3.2.2) we observe three peaks. Indeed for each atom there are three variational

parameters: f1s,1s, f2s,2s and f1s,2s. Only the f1s,1s parameters (broad peak) have magnitude larger than

0.

parameter that is indeed changing a lot along the T=2300 K isotherm is the so-called inverse

participation ratio (IPR), that we define as

IPR =

∫
dr3ψ4(r)[∫
dr3ψ2(r)

]2 (3.5)

This quantity vanish with the system size if ψ represent an extended state, while remains

constant if ψ is a localized state. The IPR function is used in the context of the Anderson IMT.

We instead adopt this quantity only to qualitatively observe changes in the wavefunction

that we can relate with the IMT. In Fig.3.11 we see that the IPR behavior as a function of

the pressure shows a clear change at ∼ 100 GPa. At smaller values of the pressure, the IPR

is high, therefore the HOMO molecular orbital is localized. Above 100 GPa, the HOMO is

extended, and according to this IPR, it should represent a metal. The range of pressure in

which such IMT takes place is qualitative agreement with the 130 GPa value at 2300 GPa,

given above by the density matrix analysis. Moreover, since the HOMO is obtained with

LDA this values is probably underestimated. Notice that, the Fig.3.5(a), is obtained with

molecular orbitals optimized with VMC instead.
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Figure 3.11: Inverse participation ratio, calculated with the LDA HOMO, for several equilibrated

protonic configuration at different densities and T=2300 K. Notice that the jump occurs at ∼ 100 GPa,

that is more than 200 GPa’s before the first order LLT (red arrow). The profile of the average lifetime

function as a function of the pressure is also plotted (see Fig.3.2.c).
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3.5. QMC molecular dynamics: details and tests

3.5 QMC molecular dynamics: details and tests

We employ simulation cells containing up to 256 hydrogen atoms and use the novel MD

scheme with friction in the NVT ensemble described in the previous Chapter (2.5.2), for

simulation times of few picoseconds, long enough to have well converged results on the

pressure, internal energy, and the radial pair distribution function g(r). Since our conclusion

about the LLT are rather unexpected we provide now some important and systematic tests

on the accuracy of our method. There are essentially three points to carefully address and

they are:

• Quality of the wavefunction. Within VMC (and DMC as well) the accuracy of the cal-

culation is related to the accuracy of the trial wavefunctions. In Sect. 3.5.1 we perform

systematic tests on the basis set on which our trial wavefunction is expanded.

• Ergodicity. In order to locate the first order transition we must ensure that the sim-

ulations are equilibrated, within the QMC approach. In Sect. 3.5.2 we prove that the

outcome of our simulations are indeed independent from the initial configurations,

near the LLT.

• Finite size effects. This point is also crucial. Indeed, by using simulation cell con-

taining a finite -and usually small- number of particles, one has to be sure that results

are close to the thermodynamic limit. In Sect. 3.5.3 we show that finite size effects are

indeed very important even in the liquid phase.

Moreover, we already showed (see Sect. 2.5.1) that the generalized Langevin equation

with position dependent friction/noise matrices does not introduce any sort of bias in the

simulations.

3.5.1 Basis set convergence

Since QMC, even in its simplest VMC formulation is quite computationally expensive, we

must employ a compact wavefunction. Therefore we have to choose a compromise between

the accuracy of the calculation and the total number of variational parameters. Our wave-

function is expanded in localized atomic orbital (cf. Sect. 2.3.2). Therefore our way to im-

prove the variational freedom within our ansatz is to enlarge this atomic basis set. The results

obtained in this Chapter are obtained with molecular orbitals expanded on a 2s Gaussian ba-

sis per atom. A 2s localized basis set is used also for the 3-body Jastrow We must check that

our physical results for the g(r) and the pressure does not significantly depend on these par-

ticular choices. To do so, we compare the 2s and a 3s1p basis on a smaller 54-atoms system.
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3. High pressure phase diagram of liquid hydrogen

Total Energy for fixed ionic configurations

rs=1.44 rs = 1.24

VMC - JSD - 2s -0.54750(1) -0.5141(1)

VMC - JSD - 3s1p -0.55391(1) -0.52246(1)

VMC - JDFT - 6s5p1d -0.5542(1) -0.5230(1)

LRDMC - JSD - 2s -0.55239(1) -

LRDMC - JSD - 3s1p -0.55678(1) -0.52535(1)

VMC - “CEIMC” -0.55605(2) -0.52564(2)

RQMC - “CEIMC“ -0.5572(1) -0.52638(3)

Table 3.2: Total energies per atom (in Hatree) obtained with different methods: VMC, DMC or

RQMC; different optimization methods JSD (Jastrow and SD optimized together) and JDFT (opti-

mized Jastrow with SD orbitals given by DFT-LDA) and atomic basis sets (2s, 3s1p, 6s5p1d) in which

the molecular orbitals are expanded. The best energies for both the configuration are obtained with

the ”CEIMC” ansatz. However, a simple 3s1p basis set for each atom gives total energy that differ

only by few mH/atom. The fact that the LRDMC using such guiding function has energy differences

. 1 mH/atom means that the 3s1p basis provide an almost optimal nodal surface. LRDMC values

are obtained with lattice space extrapolation.

In Table 3.2 we compare the energetics, obtained with different trial wavefunctions, for

two different configurations (one molecular and one atomic) at densities rs=1.44 and rs=1.24.

These two configurations have been provided by Prof. Pierleoni, along with their energies

evaluated within VMC and RQMC. We simply label these two energies as “CEIMC” as the

precise trial wavefunction in this case is unknown to us. From these data we see that the

VMC calculations with 3s1p is almost converged, as it gives energies that are 2-3 mH/atom

higher than the DMC (or RQMC) values, that we can assume to be the reference values. We

can afford to use 3s1p basis by adopting the hybrid orbitals described in Sect. 2.3.2.1. In this

case three hybrids/atom are necessary to recover the energy of the uncontracted 3s1p basis

per atom4. Instead, the 2s basis VMC loses about 9 and 11 mH in these configurations, with

respect to their large basis counterparts (“CEIMC” calculation).

However, since the size is quite small we can directly run VMC-MD simulations, com-

paring the 2s and the 3s1p wavefunctions performance directly for the observables of our

interest. In Fig.3.12 and 3.13, we see that the two basis gives almost exactly the same g(r)

and the bias in the pressure is only about ∼2-4 GPa’s. From this fact, we can conclude that

4the uncontracted basis means 6 variational parameters for atom. Using hybrid orbitals we save a factor 4 in

the total number of variational parameters in the SD.
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3.5. QMC molecular dynamics: details and tests

the difference in the total energy is not particularly relevant. The pressure and forces in-

stead are already evaluated accurately in the small basis case as the g(r)’s profile is basically

unchanged. Notice also that the QMC noise is totally under control, as different VMC bins

length N lead to very similar g(r)’s and pressures, and the behavior of the total energy as a

function of 1/N is smooth and indeed perfectly linear. This property allows, in principle, the

possibility of employing a very small VMC bin length, i.e. comparable to the largest num-

ber of parameters that enters in the optimization. This fact, combined with the possibility to

work with a compact basis set, makes our QMC-MD computationally feasible even for very

large sizes.

Analyzing the results also from a physical point of view, we remark here that our g(r)’s

are not too far from the DFT-HSE predictions for the same system. The HSE functional is one

of the most accurate and used xc functional for condensed system (and indeed high pressure

hydrogen[17]) while the LDA is the simplest one. This fact validates the approach and, at

the same time, shows another evidence on the gained molecular stability within QMC since

HSE simulations displays a reduced molecular peak at 120 GPa. The LDA instead shows

explicitly its bias towards the atomic (metallic) phase as it destroys all the molecules.

It is unlikely that this enhanced stability of the molecular phase is a bias due to the local-

ized basis set as we showed that two different ansatz -that differ in energy of ∼ 5 mH/atom-

provided the same g(r), and the 3s1p is only∼ 2.6 mH/atom higher in energy with respect to

the LRDMC (see Table 3.2). As expected, since the quality of the DFT improves by increasing

the density, DFT and VMC give very similar g(r)’s at 420 GPa5.

rmax | # parameters | Energy error

0 1542 0.022(6)

2 1813 0.0044(11)

3 3003 0.001(1)

4 5108 0.004(1)

5 8443 -

Table 3.3: Optimized energy for a 256 atom equilibrated configuration as a function of rmax. Energies

are given as a difference with respect to the rmax = 5 reference value E(rmax = 5) = −128.236(4)H.

It is noteworthy that even the rmax = 0 setting improve upon the J+DFT total energy -128.157(4), in

which molecular orbitals are not optimized in the presence of the Jastrow factor.

The next test involves the use of the rmax cutoff in the optimization of the molecular or-

bitals (see Sect. 2.3.2.1). For hydrogen it is enough to consider rmax= 4 a.u. to have essentially

5for the 54 atom system.
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Figure 3.12: Accuracy of the wavefunction: tests at density rs=1.44 and T=600 K. The panels on

the left refer to the 2s basis set, while the panels on the right to the much more accurate 3s1p. We

also test the convergence of the observables as a function of the VMC bin length. Top panels: Radial

distribution function obtained with different VMC bins. Notice that the 2s and the 3s1p results are

almost indistinguishable. We also plot the DFT predictions for LDA and HSE xc functional. All

the calculation are performed for 54 atoms at the Γ point. Middle panels: Total energy (extensive) as

a function of the inverse VMC bin size. The two basis extrapolate to two different energies. The

extrapolation is linear, suggesting that the bias due to the finite VMC bin length is systematically

improvable. Bottom panels: Pressure as a function of the inverse VMC bin size. This value is rather

insensitive to the bin length and the basis.
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Figure 3.13: Accuracy of the wavefunction: tests at density rs=1.24 and T=1700 K. The panels on

the left refer to the 2s basis set, while the panels on the right to the much more accurate 3s1p. We

also test the convergence of the observables as a function of the VMC bin length. Top panels: Radial

distribution function obtained with different VMC bins. Notice that the 2s and the 3s1p results are

almost indistinguishable. We also plot the DFT predictions for LDA and HSE xc functional. All the

calculation are performed for 54 atoms at the Γ point. Middle panels: Total energy (extensive) as a

function of the inverse VMC bin size. The two basis extrapolate to two different energies. Also in this

case the extrapolation is linear. Bottom panels: Pressure as a function of the inverse VMC bin size. This

value is rather insensitive to the bin length and the basis.

converged results for the molecular orbitals (see Table3.3). This possibility implies a drastic

reduction of the variational space (from ' 33000 parameters to ' 5000 in a 256 hydrogen
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3. High pressure phase diagram of liquid hydrogen

system, using one 2s hybrid atomic orbitals per atom)
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3.5. QMC molecular dynamics: details and tests

In Table3.2 we see that LRDMC energy depends on the choice of the guiding function,

i.e. on the nodal surface defined by the trial wavefunction. Nevertheless, DMC improves the

total energy of ∼3-4 mH/atom within the same variational ansatz, with respect to the VMC.

We perform a DMC molecular dynamics simulation6 to check whether this energy gain is

directly connected with the forces, that is, if DMC may quantitatively change the outcome of

the simulations compared to VMC.

The DMC-MD simulation scheme is very similar to its VMC counterpart, with the ex-

ception that the ionic forces and the generalized forces acting on the parameters { fk} are

computed as mixed averages (see Sect. 2.3.4). At each step, not only the ions are moved ac-

cordingly to the ionic forces, but also the guiding function is updated, following the { fk}’s.

Notice that the equilibrium condition { fk}=0 now does not correspond exactly to the min-

imum DMC energy state, but still defines an improved variational ansatz compared to the

simpler VMC optimization. Moreover, this bias vanishes if the VMC trial guiding function

is exact.

We perform a DMC-MD at T=600 K and density rs=1.35 for a 54 proton system. The

DMC algorithm is about an order of magnitude slower than the VMC, and larger number of

atoms are not possible with the available computational resources. Nevertheless, we do not

observe qualitative changes for the radial pair distribution functions and for the pressure,

apart from an overall ∼5 mH/atom shift of the total energy (see Fig.3.14).

In conclusion, the DMC-MD is more accurate because the energy - is lower than the one

obtained by VMC, but this is achieved with a much more expensive computational cost.

Nevertheless, no quantitative changes to the physical results (for the present accuracy in the

phase diagram) are found by employing DMC on this system.

6within the LRDMC scheme.
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Figure 3.14: Comparison between VMC (black-triangle up points) and DMC (square-red points) dy-

namics at T=600 K and density rs=1.35 for a 54 proton system. In the top panel we plot the total

electronic energy as a function of the (first 1000) MD steps; in the inset the radial pair distribution

function. In the lower panel we plot the pressure. The average values for the pressures (evaluated

after that equilibration has been achieved) are PVMC = 204(1) GPa and PDMC = 201(1) GPa. This shift

in pressure at fixed density is not relevant for the present accuracy in the phase diagram.
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3.5. QMC molecular dynamics: details and tests

3.5.2 Ergodicity of the MD simulations

The use of a compact basis set is of fundamental importance in order to reduce the com-

putational time required to evaluate the energy and the forces at each MD step. Indeed,

it is essential to provide correctly equilibrated MD runs in order to obtain meaningful pre-

dictions. One subtle point connected with ab-initio MD simulations is the possible lack of

ergodicity. If the computational time per step is huge, one may only afford a few MD steps

and the total simulation time can be smaller than the equilibration time. In these cases, the

ab-initio accurate methods is almost useless as it will not provide any structural change, with

respect to the starting configuration. In other words, we must be sure that the ab-initio QMC-

MD runs can achieve equilibration themselves, and that the outcomes are independent of the

particular choice of the initial configuration.
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Figure 3.15: Ergodicity of the simulations. (a) Energy E and (b) pressure P as a function of the

ionic steps during a Langevin dynamics simulation at rs = 1.28 and T = 600 K. Red squares refer

to a simulation whose starting configuration is an atomic fluid, while black circles correspond to

a molecular initial configuration (see inset c for the radial pair distribution functions of these two

configurations). After a short equilibration, energy, pressure, and radial pair distribution function

(inset d) converge to the same values. The time step used in integrating the SLD is ∼ 0.8 fs. 256

hydrogen atoms are considered.

As well known, hysteresis is usually found by using local updates in simple Monte Carlo
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3. High pressure phase diagram of liquid hydrogen

schemes, that can not be therefore reliable to determine the phase boundary of a first order

transition. The MD-driven sampling is instead powerful enough that different phases can

be reached during the simulation, with time scales that remain accessible for feasible com-

putations. In Fig.3.15 and Fig.3.16 we show typical equilibration profiles displayed by the

MD. Indeed the equilibration is independent from the starting point both at low tempera-

ture (see Fig.3.15) and at high temperature, very close to the LLT (see Fig.3.16). Notice that

the pressure typically increases as a function of the density with a rate of ∼ 20 GPa/0.01 rs

(see Fig.3.2.a). Therefore, if one repeatedly misses the transition due to hysteresis effects by

performing constant density simulations along a given isotherm, the LLT predicted pressure

may easily be shifted by tens of GPa’s. In Fig.2.8 the efficiency of the VMC-MD in exploring

the configuration space with respect to the CEIMC technique -on the very same system- is

clear, since we can afford a larger number of global sampling updates. Therefore we believe

that the major source of possible errors in the phase diagram is connected to a poorly equi-

librated ionic sampling. For this reason we chose to employ a small basis set and perform

long and equilibrated MD runs rather than to improve the energy by a few mH’s but having

short MD simulations.
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Figure 3.16: Pressure as a function of simulation steps for two different starting configuration at

T=2300 K and density rs=1.32 (the LLT being between rs=1.31 and 1.32). Black points correspond

to a mainly molecular initial distribution while the red ones to an atomic fluid (left inset). The two

simulations thermalize halfway between the two possibilities (right inset). The time step used in

integrating the SLD is ∼ 0.4 fs. 256 hydrogen atoms are considered.
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3.5. QMC molecular dynamics: details and tests

3.5.3 Finite size effects

All the results for the LLT presented here refer to a cubic supercell at the Γ−point with the

largest affordable number of atoms (256) in order to be as close as possible to the thermo-

dynamic limit. Indeed, even though the pressure seems to converge with the size of the

simulation cell, the molecular (atomic) nature of the liquid is very sensitive to the number of

atoms N.

In Fig.3.17 we show how the finite size effects may bias the result, as the prediction ob-

tained with 256 H is different from the 128 H case. This bias affects both VMC and DFT MD

simulation.
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Figure 3.17: Radial pair distribution function calculated with different system sizes (N=256 atoms,

black line and N=128 atoms, red line). Left panel: Comparison within VMC-MD at rs=1.36 and T=600

K. The underestimation of the molecular peak is evident in the 128 H case. Right panel: Comparison

within PBE-MD at rs=1.40 and T=600 K.

This issue was previously reported in Refs. [15, 127] and cannot be removed with a better

k-point sampling, because this will be equivalent to enforce a fictitious periodicity to a liquid

phase. Therefore the critical LLT density is severely underestimated by employing supercells

smaller than N=256, which is now considered a standard size in DFT simulations of liquids.

The main reason of this effect may be structural frustrations, requiring the use of much larger
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3. High pressure phase diagram of liquid hydrogen

supercells, whose dimension L has to exceed the correlation length of the liquid. A possible

rule of thumb consists in checking that the g(r) is smoothly approaching its asymptotic value

1 at r = L. Our evidences support the conclusion that a failure in dealing with the finite size

effects will result in a severe underestimation of the LLT critical densities.

Within VMC we did not perform a systematic check on the finite size employing system

larger than 256. This may be indeed possible in the near future. For the time being, we

can assume that the 256 system provides almost converged result in the liquid phase by

comparing with DFT finite size scaling[15] at Γ point. Again, the error in the estimated LLT

pressure is more than 100 GPa, if small simulation cells are used.

3.6 Nuclear quantum effects

In this work classical protons are assumed. This may be certainly an issue for low tempera-

ture simulations, however our conclusion still holds because

• There is experimental evidence[10] that, at high temperatures ∼2000 K, there is no

isotope effect. This means that the LLT’s shift obtained at high temperature will not be

affected by the inclusion of the zero point motion.

• At lower temperatures, path integral MD (PIMD) simulations[17], shows that proton

quantum effects only shifts the position of the LLT by 40 GPa’s at∼ 1000 K, with respect

to the classical case.

Therefore, even by considering an upper limit of 100 GPa shift to lower pressures, still

the expected complete atomization will occur at 500 Gpa and 600 K, that is a pressure sub-

stantially larger than the DFT prediction.

We spent some effort in order to include quantum proton effects in our framework. To

this end, we explored two possible routes, namely the colored noise method[81, 82, 83] and

the standard path integral formulation[128].

3.6.1 Colored Noise

The colored noise thermostat is a particular Langevin thermostat that one put on top of a

Newtonian MD equation for the classical nuclei in order to include quantum fluctuations

up to the harmonic level. The final equations of motions (EOMs) are Generalized Langevin

Equations (cf. Sect. 2.5). In our case, the EOMs for the classical nuclei are already of the GLE

type, so we should in principle combine the two noises. Therefore, a correct implementa-

tion of the colored noise equations on our Langevin MD is quite an hard task. A possible

workaround is to reduce as much as possible the QMC noise and consider the EOM close to
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3.6. Nuclear quantum effects

the Newtonian limit (i.e. zero noise and zero friction, cf. Fig2.4) and put the colored ther-

mostat on top of them. However, this strategy provided unsatisfactorily results even for the

simple H2 molecule (see Fig.3.18). Moreover, for the larger 54 and 256 H systems this scheme

is extremely inefficient and therefore unpractical.
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Figure 3.18: VMC-MD for H2 molecule at 300 K, obtained with classical GLE dynamics (red) and with

our implementation of the colored noise (blue). The classical case is in agreement with the theoretical

Boltzmann distribution ρcl =

√
ω2

0 β
2π exp

(
− βω2

0(x−x0)
2

2

)
with x0 = 1.4 Bohr and ω0 ' 0.611 a.u.

given by the harmonic approximation of the realistic potential (green line). The “quantum case”

shows a more broad distribution of lengths that is only qualitatively in agreement with the expected
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3.6.2 Path integral molecular dynamics

Within the Born-Oppenheimer approximation, nuclear quantum effects can be simulated

within the imaginary time path integral formalism[128, 129]. This formalism maps the quan-

tum mechanical partition function for a set of distinguishable nuclei onto the classical par-

tition function of a so-called ring polymer, composed of NB replicas (beads) of the physical

system connected by harmonic springs. We refer the reader to textbooks for the details of

this technique. Let us just recall that, (i) the spring constant is proportional to the physi-

cal temperature T, therefore quantum fluctuation are suppressed at high temperature as the

ring polymer becomes extremely localized. (ii) The configurations of the ring polymer can
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3. High pressure phase diagram of liquid hydrogen

be sampled from a canonical ensamble with an effective temperature T∗ = T NB. For this

reason, the Langevin dynamics appears to be very suitable to generate the polymer con-

figurations, as the accuracy needed for evaluating the forces decreases with the number of

the beads (see Sect. 2.4.2). We implemented the path integral molecular dynamics (PIMD)

technique within out generalized Langevin framework using the so-called primitive approx-

imation for the action, namely the simplest Trotter discretization for the path integral. The

actual quantum correction are recovered in the NB → ∞ limit. In practice a finite number

of beads is sufficient. This number depends on the maximum frequency which appears in

the system and does not grow with the system size. Usually a NB ∼ 40 is sufficient to ob-

tain converged result for real molecules. We test the algorithm simulating proton quantum

corrections on the H2 molecule at 300 K. We compare our results with a reference quantum

harmonic oscillator model, which is analytically solvable. The radial pair distribution (see

Fig.3.19) and the total energy (see Fig.3.20) are in good agreement with the predicted values.

Notice how the classical behavior turns into the quantum one as the number of replicas is

increased.

Finally, we apply the PIMD on the 54 hydrogen bulk system. For this preliminary test,

we choose a molecular liquid at density rs=1.44 and temperature T=600 K, namely at pa-

rameters extensively probed in Sect. 3.5.1. In Fig. 3.21 we see that the quantum correc-

tions melt the molecular peak only partially. The estimated pressure is PPIMD=125,1(4) GPa,

whereas the “classical” result reported in Sect. 3.5.1 is P = 122,1(4) GPa. The total energy

now reads EPIMD=-0.54624(5) H/atom. Therefore, the zero point energy is 8.4 mH/atom ≈
0.23 eV/atom (see left panel of Fig. 3.12), namely slightly smaller than the ZPE contribution

for the isolated molecule at the same temperature ≈ 9.1 mH.

Notice that, at this temperature, quantum corrections are relevant but not dramatically

as long as the pressure and the g(r) are concerned. This fact justifies our classical nuclei

approximation, at least considering the present accuracy on the hydrogen phase diagram.

Nevertheless, the quantum corrections are expected to shift the transition pressure by some

tens of GPa’s to lower values as already reported with PIMD using DFT[17]. The quantitative

determination of this shift using systematic PIMD simulations is left for future work.

3.7 QMC vs DFT: Analyzing the differences

Until very recently, the Density Functional Theory (DFT) method has been considered the

standard tool for the simulation of electronic phases, because it allows the simulation of

many electrons with a reasonable computational effort. However, there are several draw-

backs in this technique especially for the study of the dissociation of hydrogen:

86



3.7. QMC vs DFT: Analyzing the differences

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
r [Bohr]

0

2.5

5

7.5

g(
r)

PIMD 2 beads
PIMD 8 beads
PIMD 16 beads
PIMD 32 beads
PIMD 64 beads
Quantum Ref. h.o.
Classical Ref. h.o.

Figure 3.19: Radial pair distributions for H2 molecule at 300 K obtained with PIMD simulations

with different numbers of replicas. The converged result is recovered for NB=32. The classical case

distribution is given by ρcl =
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given by the harmonic approximation of the realistic potential. The converged PIMD simulations

(red, yellow points) show a more broad distributions of lengths which are in agreement with the

expected distribution of the harmonic model ρQM =

√
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2
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exp
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√

m/2 and m is the proton mass in atomic unit.

• the single molecule is not accurately described at equilibrium and especially in the

dissociation limit [130, 37] (see Fig.3.22).

• Electronic gaps are substantially underestimated [5] within DFT, implying that possi-

ble molecular phases are more easily destabilized within standard density functionals

(DFs).

For all the above reasons, DFT seems not adequate for the hydrogen problem under high

pressure, especially in a range of pressures inaccessible by experiments, where the quality of

a particular DF cannot be validated.

Recently, it has also been shown that DFT solid stable phases strongly depend on the DF

used [18, 110, 131], suggesting quite clearly that the predictive power of DFT is limited for

hydrogen. This issue remains also within the liquid phase, since it has been shown (see Fig.

3.8) that LLT’s predictions made with PBE and HSE xc functional differ by more than 100
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Figure 3.21: Radial pair distribution function with proton quantum corrections (blue and red points).

We employ PIMD using 32 beads. We test the convergence of the PIMD run as a function of the VMC

bin length. The converged simulation is displayed with red points. The distribution obtained with

the VMC-MD using classical protons as in Sect. 3.5.1 is displayed in black. The density is rs=1.44 and

temperature T=600 K.
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GPa’s. While the HSE[40] functional, gets semi-conductor gaps right to about 0.2 eV error,

this does not necessarily imply that HSE can estimate the transition pressure with similar

accuracy. Moreover, it is suggested in Ref.[17] that the large difference in the transition pres-

sure estimated by PBE and by HSE is explained, most likely, by the different description of

the H2 bond length by these two methods.
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Figure 3.22: Dissociation energy curves for the H2 molecule for different methods, QMC at the VMC

level and with the same 2s wavefunction variational ansatz employed in the dynamics, DFT with PBE

or HSE DFs, and the exact curve obtained with full configuration interaction (CI) method[101].

However, as shown in Fig.3.22 we find that the difference between PBE and HSE for the

H2 potential energy surface is rather small when compared to the difference from the exact

result, which instead is reproduced correctly by our VMC method, with the small 2s basis

set.

We tried also to better understand the differences between VMC and DFT in the bulk

system, as the errors in the long range part of the dissociation curve are not directly related

to the bulk dense liquid. Nevertheless, it is interesting the fact that standard functionals

fail for such simple system. Therefore we analyzed a molecular dissociation process in the

bulk. To this end, we take a single 54 H molecular configuration and slowly act on the

intramolecular distance of only one among all the possible pairs. Notice how the overall

shape of the dissociation curve looks very different from its isolated counterpart (see inset

of Fig.3.23). Indeed both the equilibrium length and the long range behavior strongly differ
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3. High pressure phase diagram of liquid hydrogen

due to the presence of the surrounding atoms.
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Figure 3.23: Dissociation energy curves for a H2 molecule in the bulk for different methods, QMC at

the VMC (black points) and LRDMC (pink) level, with the same 2s wavefunction variational ansatz

employed in the dynamics , DFT with PBE (red) or HSE (green) DFs. The precise shape of this func-

tions depend on the particular configuration chosen (i.e. the position of the other 52 atoms), never-

theless, the differences between the methods are quite general. The exact dissociation curve for the

isolated hydrogen molecule is also plotted (blue). The dashed black line, which connects the VMC

points, is a guide for the eye. Notice in the inset the qualitative difference between the dissociation in

the vacuum and in the bulk. The curves offsets are chosen in order to have the lower energy points

set to zero.

The equilibrium length may differ from the isolated case even by 0.2 Bohr. In Fig.3.23 we

observe that

• The difference between DFT and VMC are rather tiny, and this somewhat validates

again our VMC approach.

• The difference between PBE and HSE are even smaller. This fact confirms the sensitiv-

ity of the LLT to the accuracy of the method.

• The PES obtained with VMC shows a flatter minimum than DFT. Therefore the molecules

in the bulk described by VMC are less rigid than their DFT counterparts.

The picture coming from Fig.3.23 is in agreement from the radial pair distribution of the

forces, calculated on the same configuration (see Fig.3.24). This time, such target quantity is
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Figure 3.24: Top panel: Radial pair distribution of the forces. This is the mean force that 2 ions at

distance r feel, averaged on a single configuration. Forces evaluated by VMC and DFT-PBE are overall

consistent and they differ mainly (see inset) around 1.6 Bohr, i.e. near the molecular bulk equilibrium

distance (dashed green line). Bottom panel: Radial pair distribution corresponding to the protonic

configuration (single snapshot) taken as a test case.

averaged over all the possible pairs, so it contains independent informations compared to the

previous -single molecule- PES calculation. Again, we observe that the molecular stiffness

is strongly reduced in the case of VMC forces. Therefore, we believe that QMC provides a

more flexible description of the molecular bond in the bulk, that energetically penalizes less

intramolecular bond fluctuations (due to the thermal fluctuation in the dense environment).

In this way we can explain the enhanced molecular stability at large densities, compared to

DFT.

It also interesting to compare energies and forces corresponding to the J-SD and the J-DFT

variational ansatz. Let us recall, that the J-SD trial function is obtained after a full Jastrow

and determinant optimization whereas in the J-DFT ansatz we simply take the determinantal

part from a DFT-LDA calculation and optimize only the Jastrow term. In Fig.3.25 we show

that J-DFT forces are substantially less accurate with respect to the ones coming from a J-SD

calculation. Therefore we prove that a full wavefunction optimization, is needed to obtain

accurate forces. Indeed the J-SD forces, i.e. the ones employed in our molecular dynamics,

are almost indistinguishable from the LRDMC (fixed nodes) forces.
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Figure 3.25: Radial pair distribution of the forces and total energy calculated on the same protonic

configuration as in Fig.3.24 with different methods. Red line correspond to a VMC calculation using

a J-SD ansatz like in our MD. These forces are very close to the LRDMC ones (black dotted line). The

J-DFT ansatz provides instead much less accurate forces. Notice also that the J-DFT forces are not zero

at the LRDMC molecular equilibrium length. The LRDMC calculation is performed using an a=0.2

a.u. lattice space[63]. A 2s/atom localized basis set is used in all the calculations for the determinantal

part of the trial/guiding wavefunction.

To conclude the analysis, we perform also a comparison between DFT, with several xc

functionals, and VMC, for different types of liquids, from a fully molecular to an atomic one.

In Fig.3.26 we compare the prediction given by the different electronic methods on a 54 H

system at Γ-point: we clearly see that DFT always enhances the molecular dissociation and

therefore underestimates the LLT transition pressure. As expected, all the methods coincide

in the large pressure liquid, since correlations become less important in the high density

limit. Qualitatively, VMC and DFT-HSE or PBE differ only at the transition, as VMC still

maintains a small molecular fraction. Notice how the HSE/PBE curves are closer to the

VMC rather than to LDA predictions. These data confirm the trend for which, the greater is

the complexity/accuracy of the xc functional used in DFT simulations, the more molecular

the fluids will result.
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Figure 3.26: Radial pair distribution comparison between DFT with LDA (black), PBE (red), HSE

(green) xc functionals and VMC (blue), at different phase space points. Top left: fully molecular con-

figuration obtained at parameters rs=1.80 and T=1800 K. Top right: mixed atomic-molecular configu-

ration, at parameters rs=1.44 and T=600 K. Bottom left: simulations near the LLT at rs=1.44 and T=1800

K. Notice that VMC still predicts a fraction of stable molecules, while the DFT is already in the atomic

regime. Bottom right: fully atomic configuration, at rs=1.24 and T=1800 K.
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3.8 Conclusions

In this Chapter we have explored the liquid phases of dense hydrogen with an ab-initio QMC

molecular dynamics. We focused in particular on the transition between the -low pressure-

molecular liquid and the -large pressure- atomic liquid. We observe that the molecules are

exceptionally stable, as we found a nonzero molecular fraction up to 375 GPa at 2300 K and

600 GPa at 600 K. Nevertheless, our simulation predict the existence of a large region in the

phase diagram that is a mixed molecular-atomic liquid (see Fig.3.8).

Therefore the first order LLT is found at large pressure between this mixed-molecular liq-

uid and the completely dissociated phase (Sect. 3.3 ). Conversely we collect some clues that

the transition between the fully molecular and partially dissociated liquid may be related to

the IMT. Thus the metallization at finite temperature occurs within the (partially) molecu-

lar phase. At high temperature this IM transition mechanism appears to be smooth, since

it is related to the interatomic distances distribution and the onset of molecular dissociation

(Sect. 3.4). Our picture is in agreement with the widely discussed experimental Ref.[10], but

it is not consistent with previous DFT simulations on this topic[13, 16, 17] as well as with

CEIMC simulations[16].

Possible explanation of such differences are provided in Sect. 3.7 , with systematic tests

on the accuracy of our QMC framework (Sect. 3.5). We observe that the major sources of bias

are given by finite size effects and possible lacks of thermalization. Therefore it is essential

to have long MD simulations, on very large sizes.

Moreover, from the point of view of the method, in this work we improved with respect

to the original work by Attaccalite and Sorella[25] in the following aspects:

• Using locality in the molecular orbital optimization (cf. Sect. 3.5.1 ) reduces the compu-

tational time and offers the possibility to simulate larger sizes (256 electrons) and for a

larger number of MD steps.

• We employ a different MD integration scheme, which allows to use a longer time step

even in the large friction regime. This helps in providing more uncorrelated samples

during the dynamics.

• We understood the role of the covariance matrix of the QMC noisy forces and the most

efficient setting of MD/wavefunction/optimization parameters in order to reduce the

autocorrelation time in the MD.

Nevertheless, in order to exactly quantify the bias given by the VMC trial wavefunction

used in this work, we plan to redo the calculations with a larger basis, both on the smaller 54

proton system and -if the computational resources will be available- on the larger 256 H size.
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3.8. Conclusions

The main results are obtained employing a strong approximation, namely considering the

protons as classical objects. Indeed we have recently explored the possibility of performing

PIMD simulations within our framework. Preliminary tests suggest that, even at the low-

est temperature considered of 600 K, proton quantum corrections are not substantial, thus

validating our general conclusions on the stability of the molecular phase. Moreover, the

inclusion of the zero point motion using path-integral techniques may allow us to explore

the low temperature region of the hydrogen phase diagram and address many interesting

open questions such as the possible existence of a ground state liquid phase.
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Chapter 4
Liquid water at room conditions

In this short Chapter we report some preliminary results on liquid water at ambient temper-

ature and density. If dense liquid hydrogen is the most common substance in our universe,

liquid water is, by far, the most important one for the life in our planet. Water is also proba-

bly the most studied system, both computationally and experimentally. Nevertheless, there

are still many open questions on liquid water: one of these concerns the structure of bulk wa-

ter at room temperature. We address this problem by using the very same QMC molecular

dynamics technique which was previously described and employed for the dense hydrogen

problem.

In Sect. 4.1, we first provide the motivation of this research, then, in Sect. 4.2 we report

some of the latest results obtained with these first QMC-MD simulations on liquid water.

We obtain encouraging results, which are very well in agreement with recent experimental

references. This fact also provides an independent evidence of the accuracy of this technique.

4.1 Introduction

The structure of water is a recurring theme at the interface of contemporary physics, chem-

istry, and biophysics. Even if the liquid does not have a precise static structure in a lattice

sense, the characteristic forces between the water molecules result to a well defined radial

and angular molecular distributions at given temperature.

Since it is not possible to directly measure the intramolecular forces, the only way to

understand this delicate balance between covalent, hydrogen bond and dispersion forces,

is by looking at the structure that they produce. The precise understanding of these many

body interactions are also important for developing simplified and computationally cheap

classical model which can be used in the ever growing field of biophysical simulations.
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4. Liquid water at room conditions

From the experimental point of view, even if the experimental conditions are easy to

realize (compared to the dense hydrogen problem), the difficulties arise from the interpreta-

tion of the spectroscopic measurements[35]. Therefore, there are still many open questions

about the structure of liquid water (see e.g. Ref.[31] for discussions on two experimentally

proposed structures of water: “tetrahedral” or “chained”).

From the point of view of simulations, clusters and bulk water have been extensively

studied by ab-initio MD within DFT, employing a large variety of approximations for the

exchange correlation density functionals. Among semi-local functionals, the most widely

adopted are the gradient corrected functionals BLYP and PBE. The first BLYP-DFT simulation

appeared in 1993[132] and, after that, there have been several efforts to obtain structural in-

formation for water at ambient conditions from DFT-based molecular dynamics simulations[32,

33, 30]. From the comparison with experiments, it has been shown that DFT yields in gen-

eral an overstructured liquid at the 1 g/cm3 density and ambient conditions[32, 33, 30, 133].

The fact that the melting temperature of ice was found to be around 410-420 K for DFT sim-

ulations with PBE and BLYP functionals (see Ref.[133] for details), suggests that ambient

condition DFT simulations reproduce a supercooled state instead of “real“ liquid water.

In our approach we can only provide results on the static quantities, like the Oxigen-

Oxigen radial pair distribution function gOO(r). DFT simulations using standard xc func-

tionals, usually predict an overstructured liquid, that is, having an higher first peak and a

smaller first minimum, compared with the experimental references. The first peak position

also depends on the xc approximation (see Ref.[30] for a systematic comparison between

DFT functionals), and its predicted position may vary in a range of ∼ 0.05
◦
A . The inclu-

sion of empirical corrections clearly improve the agreement with the experiment, but at the

expense of missing a true ab-initio approach.

Moreover, a recent accurate experiment of X-ray diffraction[34] has raised again the is-

sue of the reliability of present ab-initio molecular dynamics schemes, as it was found that,

surprisingly, the position of the first peak was shifted towards larger distances. This ob-

servation is in excellent agreement with a recent extensive and independent review on the

experimental results on the structure of bulk water[35]. Indeed in Ref. [35] a new methodol-

ogy to interpret the experimental data is employed and a shift also of the intermolecular O-O,

O-H and H-H peaks positions with respect to the old (2000) experimental reference[134] are

reported. In particular, in 2000, the first O-O peak had a height of 2.75 at a position of 2.73
◦
A , whereas with the new analysis refinements it has a height of 2.49 at a position of 2.82

◦
A

(see Fig. 4.2)
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4.2 Results

We apply the molecular dynamics driven by quantum Monte Carlo forces as in the case of

liquid hydrogen at high pressures. We have employed a simulation box containing 32 water

molecules in the NVT ensamble at experimental density. Finite size effects studies within

DFT[30] showed that this size is already sufficient to obtain quite converged radial pair dis-

tribution function. Since equilibrium properties does not depend on the mass, we have used

the Oxygen mass equal to the Hydrogen one: this choice clearly improves the autocorrela-

tion times. We have done about 5000 MD iterations, where at each iteration we optimize

about 12000 variational parameters. The localized basis set is optimized using the water

dimer system as a benchmark. We employ a 5s5p1d basis set, expanded over 5 hybrid orbital

per Oxigen atom and a 3s1p over 3 hybrid orbitals per Hydrogen atom, for the determinantal

part1 of the wavefunction. We expand the 3-body Jastrow on a 3s2p basis set per Oxigen atom

and a 2s2p set per Hydrogen atom. Extensive discussions on the trial wavefunction choice

and performance comparison between other techniques for the water dimer and examers,

will be reported in a forthcoming publication[135].

Our starting configuration is generated by a DFT-BLYP dynamics. The MD Langevin

simulation is sufficiently long to observe a complete relaxation for the local quantities, like

the short range sector of the g(r)’s. We see in fig.(4.1) that these first results are very encour-

aging. Despite the noise, the outcome is quite clear, because the O-O g(r) is much closer

to experiments than the corresponding DFT calculations. Not only the radial distribution

function is much less overstructured, but also the position of the first peak is almost indis-

tinguishable from the most recent experiments. In order to avoid possible size effects we

study in Fig.(4.2) the position of the first peak with a much shorter simulation ( 600 steps)

with 64 water molecules. Since this position equilibrates rather smoothly with the length of

the simulation ' N = #steps, we are able to extrapolate the first peak position also for the

largest size. Notice that the 1/N extrapolation scheme derives from the fact that we include

in the analysis also the equilibration time, therefore the out-of-equilibrium value (computed

using the first N steps) contributes to the total average with a 1/N weight. We find that the

position of the first peak in g(r) remains very close to the smaller size simulation, supporting

the validity of our finding.

1with a cutoff distance of rmax=4.5 Bohr in the molecular orbital optimization.
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Figure 4.1: Radial distribution function g(r) obtained with 32 waters by VMC as compared with DFT-

BLYP and experiments (X-ray[34] or neutron diffraction[134, 35]) (a): Oxygen-Oxygen, (b) Oxygen-

Hydrogen, (c) Hydrogen-Hydrogen. A blow-up of the Oxygen-Oxygen first peak is reported in

Fig. 4.2.
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Figure 4.2: Left panel: First peak in the Oxygen-Oxygen radial distribution function gOO(r) obtained

from experiments (X-ray[34] in blue, neutron diffraction[134, 35] in green), from the QMC-MD sim-

ulations with 32 waters (in black), and a DFT/BLYP-based MD simulation with a PBC box of 32

or 64 waters (in violet and red, respectively). The gOO(r) data have been fitted with a function

f (r) = a exp(− r−µ
b − exp− r−µ

b ) for r in the range 2.6 – 3.0
◦
A (gray square). The values of rMAX ∼ µ

have been highlighted with colored coded arrows. Right panel: The plot reports the values of rMAX,

for the QMC-MD trajectories that start from a given configuration and are of increasing length, over

the inverse of the length of the simulation (i.e. the number of steps). The linear fit of the leftmost

values provides the extrapolation to zero, that is the equilibrated value (coinciding in the 32 water

case with the average over the last-2500 equilibrated steps of dynamics). These values are compared

with other methods, reported in the shadowed area.

4.3 Conclusions

We have reported the first ab-initio molecular dynamics simulations within a QMC approach

on bulk liquid water. Notice that, before this work, QMC has been recently used only as a tool

for benchmarking and analyzing DFT errors on fixed configurations[136, 137], as the current

belief is that QMC remains too expensive for regular use in first-principles MD simulations

of bulk systems[137]. Indeed, employing the CEIMC technique to this system is particularly

expensive because of the rather inefficient Metropolis sampling, based on energy differences,

at low temperatures[138].

We have shown the feasibility of combining QMC, at least in its simplest variational for-

mulation, within a MD framework in order to obtain configuration samples of bulk liquid
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4. Liquid water at room conditions

water in thermal equilibrium, containing up to 64 molecules. The good comparison with

recent experimental references shows that this approach is very promising. Systematic com-

parisons between QMC and DFT, as done in Sect. 3.7 for hydrogen, will be necessary in order

to understand the differences between the two techniques. Indeed, the dissociation curve of

the isolated water dimer is correctly described by BLYP at equilibrium distance, so it is likely

that the DFT shift in the gOO(r) is due to a nonoptimal description of the interaction be-

yond the two body (two water molecules). This effect may be similar to what happens in the

dense hydrogen case, where the interaction between a pair of atoms is strongly affected by

the presence of other particles.
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Chapter 5
Conclusions

In this thesis we have presented large scale molecular dynamics simulations driven by QMC

forces. The realistic system under consideration were dense liquid hydrogen and liquid wa-

ter at room conditions. These are bulk systems which require simulations of many atoms, in

order to reproduce correctly the thermodynamic properties, and are computationally very

expensive. Nevertheless, we showed that our approach, based on a novel Langevin molec-

ular dynamics driven by QMC noisy forces (see Sect. 2.4) , is computationally feasible even

considering large systems. Indeed, within this scheme we are not forced to decrease to noise

level of the extensive total energy to the order of kBT. Therefore, we can perform long and

equilibrated QMC simulations on system sizes which can usually be investigated only within

a DFT approach.

The main physical result of this thesis is reported in Chapter 3 and concerns the transition

between the molecular and the atomic hydrogen fluid at high pressure. From the simulations

we can distinguish between three, qualitatively different, types of liquids. The fully molec-

ular liquid at low pressure is characterized by a sharp molecular peak of the radial pair

distribution function g(r). We observe that g(r) ≈ 0 around the first minimum, showing that

there is a well-defined covalent bond between the two hydrogen atom, with a well-defined

equilibrium molecular distance. A smooth crossover toward a mixed molecular-atomic liq-

uid is observed with increasing pressure. In this liquid, the coordination shells are not well

separated but the persistence of a broad molecular peak is evident. We observed that this

phase is exceptionally stable, as we found a nonzero molecular fraction up to 375 GPa at

2300 K and 600 GPa at 600 K. Finally, the fluid completely dissociates into an atomic liquid

phase. The transition between these two latter kinds of fluids appears to be weakly first

order, as signalled also by a discontinuous behavior of the density as a function of the pres-

sure (Sect. 3.3). This first order liquid-liquid transition is found to be at higher pressures
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with respect to previous DFT-MD simulations. Conversely we collect some clues that the

transition between the fully molecular and the partially dissociated liquid may be related to

the insulator to metal transition. Thus the metallization at finite temperature occurs within

the (partially) molecular phase. At 2300 K the metallization takes place at a pressure ∼130

GPa, a value which is very well in agreement with the experiment, while at 600 K the IMT

is predicted to be at ∼440 GPa (Sect. 3.4). Notice that these outcomes are obtained with

the classical nuclei approximation, therefore the quantum proton corrections are expected to

shift the two transitions towards smaller pressures, especially at lower temperatures. Nev-

ertheless, even by considering an upper limit of 100 GPa shift to lower pressures, due to

proton quantum effects, we predict that experiments should be done at least above 500 GPa

to observe the atomic liquid at room temperature. We plan to perform systematically the

path integral molecular dynamics calculations introduced in Sect. 3.6 to better quantify this

rough estimation. On the electronic side we performed MD simulations with DFT, Varia-

tional and Diffusion Monte Carlo in order to evaluate how the different approximations for

the electronic correlation affect the physical results on hydrogen and we ascribe the different

predictions given by DFT and QMC to the different descriptions of the molecular bond in

the bulk (Sect. 3.7). Indeed the well known large errors of DFT in the long distance part of

the molecular dissociation curve in the vacuum may not be directly related to the bulk dense

liquid as the presence of the surrounding atoms strongly influences the molecular bond.

Moreover, all the possible technical sources of error have been discussed. In fact, our re-

sults raised a lively discussion among the QMC community, as they substantially differ from

previous investigations within the CEIMC technique, namely a technique which employs

QMC energetics to drive the sampling and, therefore, is expected to have a similar degree of

accuracy compared to our method. Since the all the systematic tests reported in Sect. 3.5.1

support the quality of our variational wavefunction ansatz, we believe that the major sources

of error, that we proved to have solved within our approach, come from finite size and lack

of equilibration effects (see Sect. 3.5).

Finally, we performed QMC molecular dynamics, at the VMC level of accuracy, on liquid

water at ambient conditions (Chapter 4). Also in this case we observed significative differ-

ences with respect to previous DFT based simulations, which are very encouraging, in view

of their good agreement with experiments.

Together, these results on water and hydrogen confirm the feasibility of the QMC molecu-

lar dynamics as an alternative and promising technique to investigate equilibrium properties

of bulk materials.
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Appendix A
First order covariant Langevin

dynamics

A.1 Partition function

In Eq.(2.95), we use a simple relation for recasting the trace in a finite dimensional Hilbert

space as an integral of normalized wave functions |c〉 =
D
∑

i=1
xi|i〉, namely:

D
∫

dxDδ(‖x‖ − 1)〈c| exp(−βH)|c〉 = SDTr exp(−βH) (A.1)

where SD = 2πD/2/Γ(D/2) is the area of the D−dimensional unit sphere. The above re-

lation can be immediately proved by substituting |c〉 =
D
∑

i=1
xi|i〉 in the LHS of the above

equation and noticing that
∫

dxDδ(‖x‖ − 1)xixj = δi,j
∫

dxDδ(‖x‖ − 1)x2
i , namely it is non

zero only for i = j. Then, we can sum the integrand over the dummy index i and divide

by D, and obtain:
∫

dxDδ(‖x‖ − 1)xixj =
δi,j
D SD, that easily proves Eq.(A.1), as previously

stated.

The simple relation (A.1) can be also extended in the space α with non trivial metric, by

using the invariant measure dαp
√
|S|, corresponding to the metric tensor S:∫

dαp
√
|S|〈α| exp(−βHR)|α〉

ZS
= Tr exp(−βHR) (A.2)

A.2 Monte Carlo sampling of the partition function

In principle the partition function ZQ can be sampled by almost standard Monte Carlo meth-

ods, whenever the metric S and the expectation value of the energy H over the ansatz |α〉
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are known, for instance within the Hartree-Fock theory, namely when |α〉 represents just a

simple Slater determinant.

However in the truly correlated case, namely when the ansatz |α〉 differs from a Slater de-

terminant, there are extra complications because both the matrix S and 〈α|HR|α〉 are known

only within statistical accuracy. In this case a possible way to sample the partition func-

tion ZQ and the corresponding thermodynamic quantities is to use the penalty method[22],

introduced some years ago, by using a cost function

VP(α, R) = 〈α|HR|α〉 −
1

2β
ln |S| (A.3)

that can be computed statistically with corresponding error bars.

In the following we have chosen a different route, by employing a finite temperature

molecular dynamics rather than Monte Carlo sampling, for the same reason described in the

above Sections, namely that the QMC noise represents a bias that vanish linearly with the

time step.

Our goal is to sample points in the electronic parameter space α distributed according to

the probability distribution defined in Eq.(2.102), by using first order derivatives of the cost

function. In the standard Cartesian metric it is possible to use a Langevin dynamics for the

variables {α} and {R}, by means of the standard first order equation of motions:

~̇x = −∂~xV +~η (A.4)

where ~x is a covariant vector in a finite dimensional euclidean space, whereas ∂~xV(x) is

the derivative (force) of a potential V. By means of this equation it is well known that it is

possible to sample the equilibrium distribution Weq(x) = exp(−βV(x)) provided we satisfy

the fluctuation dissipation theorem, implying that:

〈ηi(t)ηj(t′)〉 = δ(t− t′)δi,j
2
β

(A.5)

Now we suppose to change the reference coordinate system by means of a generic transfor-

mation of variables x → α (a p-dimensional non linear mapping as in general relativity). In

the following we have to take into account the Jacobian of such mapping, denoted in the

following by the matrix L:

Li,j = ∂xj αi(~x) (A.6)

Then, the Langevin equation in this new reference can be easily obtained:

~̇α = −S−1 ∂V
∂~α

+ L~η (A.7)
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where S−1 = LL†, and the equation (A.5) that defines the fluctuation dissipation theorem

remains unchanged.

The Eq.(A.7) is covariant if we just replace the matrix S with the matrix defining the

metric in a generic curved space:

ds2 = Si,jdαidαj (A.8)

where in this formalism sums over repeated indices are conventionally assumed. Indeed

after the given transformation the above metric tensor transforms as:

S→ (L†)−1SL−1 (A.9)

that leaves unchanged the covariant first order Langevin equation (A.7), as expected.

Thus, from the above equation, we obtain the desired result with the matrix L given by

any solution of the matrix equation:

S−1 = LL†.

Unfortunately Eq. (A.7) looks a bit complicated when it is discretized in times tn = ∆n,

because the integral of the random noise depends explicitly on the curvature of the non lin-

ear space by means of the matrix L, and the resulting integration is not univocally defined,

simply because the solution S−1 = LL† is not unique. Indeed S−1 remains unchanged under

the substitution L → LU, where U is an arbitrary unitary matrix. In order to remove this

arbitrariness, according to Risken[139], we can work out the integral of the equation of mo-

tion in a small time interval of length ∆, by requiring also that the corresponding Markov

process:

α(tn+1)
i = α(tn)

i − ∆
[

S−1(tn)∂~α

(
V − 1

2β
ln DetS

)
(tn)

]i

+
1
2 ∑

k
∂αk Di,k + yi

n

〈yi
nyj

n〉 = Di,j =
2∆
β

S−1
i,j (tn) (A.10)

has the correct equilibrium distribution for ∆→ 0:

Weq(α) ∝
√

DetS exp(−βV(α)) (A.11)

In fact it is possible to show that, only with the above definition of the drift term, the associ-

ated and univocally defined Fokker-Planck equation for the probability distribution W(α, t)

reads for ∆→ 0:

∂tW(α, t) = ∑
j

∂j

{
∑

i

1
β

S−1
j,i ∂iW(α, t) (A.12)

+ W(α, t)
[

S−1∂~α

(
V(α)− 1

2β
ln DetS

)]j
}
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which has the equilibrium distribution Weq(α) satisfying:

∑
i

1
β

S−1
j,i ∂iWeq(α) + Weq(α)∑

i
S−1

j,i ∂i

(
V − 1

2β
ln DetS

)
= 0 (A.13)

Indeed, by multiplying both sides of the equations by Sk,j and summing over j, we obtain

the standard equation for the equilibrium distribution
√
|S| exp(−βV).

A.3 Covariant Langevin dynamics for ions and electrons

We want to implement the above formalism in an ab-initio molecular dynamics (MD) at

finite temperature dealing with electrons and ions within the same formalism, similarly to

what was done in the pioneer work by R. Car and M. Parrinello[3]. In the following we will

show how the ionic motion can be quite naturally included in the above scheme. In fact

what we obtained before does not hold only for the electronic parameters, but for a generic

set of parameters which appear in a variational wave function. The ionic positions R can

thus be thought as complementary parameters. The inclusion of this kind of parameters

in the above formalism is straightforward: if M is the number of atoms, then S becomes a

(p + 3M)× (p + 3M) block-diagonal matrix. The mixed elements S{α},{R} are always zero

since total wave functions characterized by different sets of atomic positions are orthogonal.

Moreover, since the ionic positions R belong to the real space, the corresponding metric is

the Cartesian one, and is defined by a diagonal matrix S(Rl , Rr) = SNδl,r among all the ion

components. Thus, we can esplicitly write down the complete set of equations for both the

atomic and electronic parameters. For the ionic positions we use

R(tn+1)
l = R(tn)

l + ∆N Fl(tn, {α(tn}) + χl
n

〈χl
nχr

n〉 =
2∆N

β
δl,r (A.14)

with l, r = 1, · · · , 3M and Fl being the force acting on the l-th ionic cartesian coordinate,

while for the electronic variables Eq. (A.10) holds with i, j = 1, · · · , p and where −∂~αV is the

force acting on the parameters α, i.e, the gradient of the total electronic energy V evaluated

at fixed R with respect to these parameters.

Notice also that the time discretization corresponding to the ionic dynamics is defined

by the arbitrary constant SN appearing in the extended metric tensor defined before, namely

∆N = ∆S−1
N . It is clear therefore that the relative speed between electron and ion dynamics

can be tuned to optimize efficiency, exactly as in Car-Parrinello ab-initio molecular dynamics.

We emphasize here that in the limit ∆, ∆N → 0 consistent results are obtained because the

equilibrium distribution (A.11) remains unaffected by the choice of SN .
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A.4 Result: Born-Oppenheimer limit

Once we set up the discretized equations (A.10,A.14) we can test the above formalism in a

simple but realistic case. We are going to study the H2 molecule, looking at the temperature

behaviour of the total energy E and the bond distance r between the two hydrogen atoms,

assumed classical. We start with this simple system because the above quantities can be

easily computed, providing therefore useful benchmarks for our technique.

The distribution sampled by means of this covariant Langevin dynamics (CLD) repre-

sents an improvement on the gsBO only above a temperature T∗. At T = 0 our approximate

free energy FQ coincides with the gsBO one FBO, but as soon as T > 0 the FBO becomes better

for T ≤ T∗ (see Ref.[95] for details). If the temperature is much lower than the electronic

gap the gsBO approximation should be essentially exact and can be easily obtained from

the potential energy surface (PES) v(r) of the H2 molecule. In the following we are going to

show that, in this simple system, we cannot distinguish the correct BO low temperature be-

havior and the one implied by our approximate technique, clearly indicating that T∗ should

be almost negligible for this system.

To proceed further we need now to specify what type of correlated variational wave func-

tion will be used in all the following calculations, and its dependence on the two electronic

positions~r1 and~r2. In the singlet state the orbital function f (~r1,~r2) is symmetric and positive

and is parametrized here as a product of two factors f (~r1,~r2) = f0(~r1,~r2) × exp(J(~r1,~r2)),

where f0 is taken fixed and allows to satisfy the electron-electron and electron-ion cusp con-

ditions, whereas

J = ∑
i,j

λi,jφi(~r1)φj(~r2) (A.15)

is cusp free and is expanded systematically in a basis of atomic orbitals centered on each atom

containing up to 3s and 1p gaussian functions and a constant one φ0 = 1. This amounts to

p = 65 independent variational parameters for the symmetric matrix λi,j. The exponent of

the gaussians are kept fixed during our simulations. The chosen variational ansatz is par-

ticularly useful for evaluating the complicated terms in (A.10), i.e. the drift-diffusion ones

which depend linearly on the temperature and require the knowledge of the derivative of

the matrix S. This is indeed simpler for the parameters λi,j appearing in a linear fashion

in the exponential factor J of Eq.(A.15). The first step is thus to construct the PES of the

molecule ( Fig.A.1(a)). In this way we not only acquire the key information for the numeri-

cally exact evaluation of the gsBO observables, but we also check that our choice of the free

variational parameters in the wave function allows us to recover the well known PES for this

molecule[101].

Canonical averages of an observable O(r) can be obtained by computing numerically the
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Figure A.1: a. Black line: Total energy E as a function of the bond length r obtained by minimizing

the energy of our variational wave function for fixed r; in doing this we act only on those Jastrow

parameters {α}, for which we have been able to compute the covariant forces in Eq.(A.10). Red points:

Energy with error bars of configurations sampled in the dynamics (A.10,A.14) with T = 0.01 Ha.

The PES is correctly followed during the simulation. In the inset a region around the minimum at

r = 1.40 a.u. is enlarged.

b. Time averages of the total energy E at T = 0.003 Ha as a function of ∆N for four values of ∆. All

the series converge roughly to the same value which is also the expected one (horizontal dashed line)

obtained with eq. (A.16). Thus the second extrapolation ∆→ 0 is not necessary.

one dimensional (conditionally convergent) integral

Ô =

∫
dr r2 O(r) exp (−βv(r))∫

dr r2 exp (−βv(r))
(A.16)

On the other hand we can compute Ô as a time average on the Langevin dynamics (A.10,A.14)

for sufficient low T. The extrapolation ∆ → 0 involving the discretized time steps is per-
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formed in the order ∆N → 0, ∆ → 0. It is observed (see Fig.A.1(b)) that the ∆N dependence

of the time averages of the quantities is linear for fixed ∆, a property useful in the extrap-

olation. Finally we show our results for the total energy and the bond distance at various

temperatures in the range between 0.001÷ 0.01 Ha, i.e. from room temperature to ∼ 3000 K.

The forces acting on the parameters and on the ions, as well as the matrix S are evaluated

by a short QMC run at each iteration of the dynamics. We see that our Langevin dynamics

gives results in very good agreement with the expected gsBO values. We stress once again

that this dynamics does not require an electronic minimization at each ionic move, realizing

an impressive gain from the point of view of the computational cost.
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