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Résumé
Dans cette thèse nous présentons des progrès algorithmiques ainsi que plusieurs appli-

cations des méthodes de Monte Carlo quantique (QMC) pour les calculs de structure

électronique à partir des premiers principes. En général, le QMC est une téchnique qui

donne des résultats très précis même pour des systèmes à forte corrélation électronique.

En dépit d’un coût computationnel élevé, ses atouts restent l’allure polynomiale N4 en

fonction de la taille (N) du système et une très efficace parallelisation algorithmique. Les

améliorations que nous proposons permettent d’étudier par QMC des systèmes de plus

grosse taille voire infiniment étendus (périodiques), avec l’ambition de faire du QMC une

alternative valable à la théorie de la fonctionnelle de la densité (DFT). Tous les résultats

ont été obtenus par le logiciel TurboRVB, dont nous avons contribué au développement ré-

cent. D’abord, nous présentons une implémentation du QMC basée sur la fonction d’onde

Jastrow-Geminale qui combine une grande flexibilité avec une forme analytique compacte,

tout en gardant un traitement précis des corrélations électroniques. Nous avons appliqué

une technique originale de plongement de l’atome dans son propre environnement pour

réduire la taille de la base atomique d’orbitales à la molécule d’eau ainsi qu’à un modèle

simplifié du transfert de protons (TP) dans l’eau. Nos résultats ouvrent la voie à l’étude

des phénomènes microscopiques tels que le TP directement par QMC. Ensuite, nous avons

amélioré notre méthode afin de simuler les solides cristallins. Grâce à une nouvelle procé-

dure pour choisir de manière appropriée les conditions aux limites de la fonction d’onde,

nous avons pu réduire considérablement les erreurs de taille finie qui affectent les sim-

ulations QMC des solides. Sur la base des techniques développées, nous étudions enfin

le FeSe, supraconducteur à base de fer. Le QMC fournit le meilleur résultat concernant

la structure cristalline du FeSe ; via une étude systématique du paysage énergétique à

différentes configurations magnétiques, nous montrons un lien fort entre la structure, le

magnétisme et les mouvements de charge dans ce matériau, prélude à une compréhension

quantitative de la supraconductivité à haute température critique des premiers principes.

Abstract
In this thesis we present algorithmic progresses as well as applications of continuum quan-

tum Monte Carlo (QMC) methods for electronic structure calculations by first principles.

QMC generally yields very accurate results even for systems characterized by strong elec-

tron correlation. Despite its high computational cost, its advantages are the polynomial

N4 scaling with the number of particles (N) in the system and the negligible paralleliza-

tion overhead of its algorithms. The improvements we propose allow to tackle much larger

molecular as well as extended (infinite-size) systems by QMC, with the ultimate goal of

making QMC a valid alternative to density functional theory (DFT). All results have
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been obtained with the TurboRVB software, which we contributed to develop. At first,

we present a QMC framework based on the Jastrow-Geminal wavefunction which com-

bines great flexibility with a compact analytical form, while providing at the same time

an accurate treatment of electron correlations. We apply an original atomic embedding

scheme for reducing the basis set size to the water molecule and to a simple model of proton

transfer (PT) in aqueous systems. Our results pave the way to the study of microscopic

phenomena such as PT directly by QMC. Afterwards, we extend our QMC framework in

order to simulate crystalline solids. We propose a novel procedure to find special values

of the boundary conditions which allow to greatly reduce the finite-size errors affecting

solid state QMC simulations. Using the techniques previously developed, we study the

iron-based superconductor FeSe. We show that QMC provides the best crystal structure

predictions on this compound; by means of a systematic study of the energy landscape

at different magnetic orderings, we show a strong link between structural, magnetic and

charge degrees of freedom in FeSe. Our results represent an important step towards a

quantitative understanding of high-temperature superconductivity by first-principles.
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Chapter 1

Introduction

The complexity of the problems tackled by modern science is growing faster and faster

over the years. Nowadays, it is virtually impossible to find an analytical, pen-and-paper

solution to any of the models developed for these problems, except that in particular and,

in general, non-interesting situations. This aspect is a common thread of all scientific

domains investigating our reality, ranging from the study of macroscopic phenomena

such as the merge of two galaxies (scale of 1020 m) to the interaction of infinitely small

particles such as quarks (scale of 10−15 m). If one focuses on the quantum mechanical

description of atomic physics and chemistry, this fact is well summarized by the famous

quotation from P. M. Dirac appeared in 1929: “The underlying physical laws necessary

for the mathematical theory of a large part of physics and the whole of chemistry are thus

completely known, and the difficulty is only that the exact application of these laws leads

to equations much too complicated to be soluble.”

This evidence, combined with the computer revolution of the last few decades, paved

the path to develop a new broad scientific domain: computational science. More than a

third way of doing science, as it is usually considered, computational science bridges the

gap between the two traditional pillars, namely analytical theory and experimentation,

to build appropriate algorithms which can solve the otherwise unsolvable models with the

aid of a computer. The comparison and the validation of the outcome with experimental

results is obviously unavoidable. In some sense, computational science is a brute force,

number-crunching approach to the aforementioned challenge of modern science. And its

success demonstrates that this approach works in most situations.

The Schrödinger equation, the cornerstone of quantum mechanics, has been one of the

first problems to be fed to a computer in the early 60s, thus giving birth to the field of

first principles or ab initio calculations, namely the branch of computational science which

devises methods to find approximate solutions of the full electronic Schrödinger equation

4



5 Introduction

of atom and molecules (computational quantum chemistry) and solids (computational

condensed matter).

Among ab initio techniques, the most important and successful framework is certainly

density functional theory (DFT). The progress in DFT have advanced so far that it

is nowadays possible to predict, simply by computer simulation, new materials with the

desired electronic properties which can then be realized experimentally in a sort of reverse-

engineering process. However the accuracy of DFT cannot be determined a priori since it

is founded on an uncontrollable approximation for mapping the full many-body problem

into an effective single-particle one. Furthermore it is based on the local electronic density

only and hence it does not allow to access to the most important mathematical object

of a quantum system, i.e. the electronic wavefunction. This information is however

unavoidable for the fundamental understanding of many exotic phenomena such as high-

temperature superconductivity, superfluidity, quantum Hall effects and likely a lot of yet

undiscovered others.

The main focus of this thesis is on an alternative strategy based on the ab initio (or

continuum) quantum Monte Carlo (QMC) techniques. The idea behind QMC is fasci-

natingly simple: propose a suitable form of the Hamiltonian ground state eigenvector,

i.e. the electronic many-body wavefunction, and approximately solve the corresponding

full Schrödinger equation to get the energy and other observables out of the simulation.

The most important strength of continuum QMC is that it ensures a direct access to the

many-body wavefunction and thus it gets extremely close to a realistic quantum mechan-

ical description of how nature works at the atomic scale. This aspect, combined with its

stochastic implementation required by the high dimensionality of the quantum problem,

allows QMC to reach flexibility and accuracy far beyond one-electron methods both in

open systems and in crystalline solids, as we will demonstrate throughout this thesis.

Furthermore, the computer architecture is rapidly changing over the years. The next

generation supercomputing machines will pack up to 72 cores in each of their CPUs;

general purpose GPUs presently used in scientific computing allow to exploit up to 65000

threads, i.e. independent processes, at the same time. The future of computer science is

in parallelization, therefore it is almost certain that the future of ab initio calculations lies

in methods able to fully benefit from such level of massive parallelism. QMC is likely the

sole first-principles approach which is naturally built for the next generation computing

architectures, thanks to its “embarrassingly“ parallel algorithms based on a large number

of independent processes used in the stochastic evaluation of electronic integrals.
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Thesis motivation and outline

Despite being a very promising and robust framework, nowadays there are only few groups

around the world that make an intensive use of QMC. This is due to the intrinsic com-

putational cost of QMC algorithms with respect to DFT. This issue requires algorithmic

improvements and more computational power accessible worldwide. Furthermore the

available QMC codes are relatively few, often not well documented and a great deal

of human time is needed in order to carry out meaningful and reliable calculations, at

variance with the almost black box nature of DFT packages.

This thesis aims at addressing the twofold nature of this problem and at giving a

contribution towards a more widespread use of QMC techniques in electronic structure

calculations. On the one hand, we propose several improvements to present QMC algo-

rithms as well as new techniques for reducing the computational time necessary to carry

out QMC calculations of realistic quantum systems. On the other hand, we describe their

implementation within the TurboRVB [1] package for quantum Monte Carlo simulations,

with the ultimate goal of making this powerful software package available under an open

source license.

The structure of this manuscript closely follows the evolution of this QMC software

carried out during the thesis, starting from molecular systems and evolving towards an

accurate QMC description of crystalline materials. We always complement new algorith-

mic developments and programming efforts with extensive applications to diverse physical

problems, outlined in the following. These aspects make the present manuscript a gen-

uine interdisciplinary work in between computational chemistry and condensed matter

physics where QMC techniques play the role of common thread. This thesis is organized

in two main parts, each composed by multiple self-contained Chapters which can be read

independently:

Part 1: QMC methods for finite systems

1. Chapter 2. In this Chapter we present a general overview of the full QMC frame-

work used in this thesis for studying finite, open shell systems. Many of the topics

addressed in this Chapter are often reused or evolved in the rest of the manuscript.

The main focus is on the powerful Jastrow-geminal wavefunction ansatz, which

can include high-level electron correlation within QMC at a reasonable computa-

tion cost. Preliminary DFT calculations, wavefunction optimization methods and

single-point QMC techniques for computing observables are also detailed.

2. Chapter 3. In this Chapter we present extensive applications of the QMC methods

introduced before to an open problem in quantum chemistry: the proton transfer
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reaction in liquid water and aqueous systems. At first we devise a novel procedure

for reducing the number of parameters of the QMC wavefunction and thus ensuring a

considerable speedup in the calculations. We test our algorithm on the simple water

molecule and then we apply it to a model of proton transfer reactions composed

by two H2O and an excess proton. We show our QMC implementation to be a

highly accurate and less expensive alternative to deterministic quantum chemistry

approaches for proton transfer systems.

Part 2: QMC methods for periodic systems

1. Chapter 4. By keeping the same structure as Chapter 2, we present all the important

steps carried out for evolving our QMC framework from open systems towards an

accurate treatment of extended solids. This evolution is of paramount importance

since QMC is one of the few highly correlated techniques able to perform realistic

solid state calculations.

2. Chapter 5. This Chapter is devoted to the most important issue which plagues QMC

calculations of extended systems: the systematic errors deriving from the finite, and

generally small size of the simulation cell. We test the standard techniques against

a new procedure devised during this thesis which allows to find special values of the

phase in front of the wavefunction within periodic boundary conditions. They can

greatly reduce size errors coming from the kinetic energy part of the Hamiltonian.

We apply our procedure to several realistic systems used as benchmark.

3. Chapter 6. In the last Chapter, we apply the solid state QMC methods to a major

open problem in condensed matter physics: high-temperature superconductivity.

We study structural and magnetic properties of iron selenide (FeSe), a compound

belonging to the family of iron-based superconductors, with two complementary

QMC approaches. This work is done in collaboration with the group of Lucas

K. Wagner at the University of Illinois, Urbana-Champaign. We show that QMC

captures the physics of FeSe with an unprecedented level of accuracy and that it

can be the ab initio method of choice to tackle high-temperature superconductivity.

The algorithmic progresses as well as the extensive applications of QMC presented in

this thesis prove that this method is getting closer to become the next generation standard

in ab initio calculations.



Chapter 2

Quantum Monte Carlo methods for

finite systems

2.1 Introduction

The term quantum Monte Carlo (QMC) broadly refers to a set of techniques for com-

puting electronic structure properties of quantum systems. The main motif underlining

all QMC methods is their extensive use of Monte Carlo stochastic integration for finding

approximate solutions to the many-body stationary Schrödinger equation:

ĤΨ = EΨ. (2.1)

In this thesis we will always assume the Born-Oppenheimer approximation to hold, hence

the Hamiltonian operator Ĥ of a system containing N electrons and Nat atoms in its non

relativistic form reads:

Ĥ = −1
2

N∑

i=1

∆ri
+

1
2

N∑

i=1

N∑

j 6=i

1
|ri − rj |

−
Nat∑

a=1

N∑

i=1

Z

|ri −Ra|
= T̂ + Ŵ + Vext (2.2)

where we denote as r (R) the electronic (ionic) positions and Z the atomic charges. T̂

is the kinetic energy, Ŵ the electron-electron interaction and Vext the external potential

generated by the atomic arrangement. In Eq. 2.2 we have used atomic units (e = 1, ~ =

1, me = 1). This convention is kept throughout this manuscript.

The focus of this work is on continuum QMC methods whose fundamental object is

the many-body trial wavefunction ΨT (r1, · · · , rN). By exploiting the variational princi-

ple, these methods attempt to find the best approximate solution of Eq. 2.1 using ΨT as

an ansatz for the true Hamiltonian ground state eigenvector Ψ0. The first application of

8
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QMC dates back to the work on liquid He by MacMillan in 1965 [2]. The QMC techniques

routinely available nowadays belong to two main categories, depending on the way the

ansatz is sampled for filtering out the ground state. Within the first category, the wave-

function is evaluated in the full 3N -dimensional configurational space generated by elec-

tronic coordinates. This includes variational Monte Carlo (VMC), Green function Monte

Carlo (GFMC) [3] which has evolved to modern diffusion Monte Carlo (DMC) [4] with

its variances – lattice regularized DMC [5] and release-node DMC [6]. These numerous

QMC flavors can be combined with the path integral formalism in order to perform finite

temperature simulations and, recently, molecular dynamics simulations [7, 8]. The second

category contains the full configuration interaction quantum Monte Carlo (FCIQMC) [9],

which samples stochastically the full set of determinants generated by the chosen basis

set and the auxiliary field quantum Monte Carlo (AFQMC) [10] which rewrites the many-

body interaction in terms of independent particles described by determinants interacting

with an external auxiliary field.

The direct competitors of QMC in the domain of highly correlated first principles cal-

culations of atom and molecules are quantum chemical techniques such as coupled cluster

(CC) methods, many-body perturbation theory (MB) and the configuration interaction

(CI) approach in its single-double (CISD) or full (FCI) variants. However, compared with

these deterministic approaches QMC has two crucial advantages.

The first, and probably most obvious one is the stochastic nature of its backbone

algorithms used to cope with the high dimensionality of electronic integrals. In fact, the

central limit theorem ensures that the MC integration error ǫ, namely the statistical error,

is independent on the dimensionality of the problem and it can be written as:

ǫ ∼ σ

√

N

NMC
(2.3)

where σ2 is the variance on a single measurement and NMC is the number MC samples or

integration points. The statistical error in Eq. 2.3 can be reduced at will just by increasing

the number NMC of samples and therefore it is, in principle, possible to reach any target

accuracy simply with more computer time.

Another consequence of stochasticity is that QMC algorithms can be straightforwardly

parallelized by assigning a different random points used for integration to each processor.

Since each point evolves independently during a QMC run, there is a negligible overhead

due to the communication between processors. Diffusion Monte Carlo represents a special

case to this respect since its standard algorithm involves more communication, as we will

see in Sec. 2.4.2.

The second superior feature of QMC methods is their flexibility, which mainly results

from the choice of the wavefunction. The functional form of the ansatz can indeed be
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chosen without basically any restriction, except from being square-integrable and com-

putable in a finite amount of time. However, a good trial wavefunction must cope with

some practical requirements. At first, it is typically evaluated thousands of times during

a simulation in order to achieve the desired statistical accuracy. It is thus of paramount

importance to devise a compact and easily tractable functional form. Furthermore, the

ansatz must be able to describe electron correlation, i.e. include space-space correlators,

in order to account for a relevant part of the correlation energy. This important quantity

is defined as:

Ecorr = Eexact −EHF, (2.4)

where EHF is the Hartree-Fock energy obtained by keeping only the exchange contribu-

tion in the interacting part of the Hamiltonian, and Eexact is the exact non-relativistic

ground state energy. While Ecorr represents only a small fraction of the total energy, it is

fundamental to achieve the chemical accuracy (≤ 1 Kcal/mol equivalent to 0.01 eV per

atom) necessary to describe the energetics of weakly bonded molecular systems, but also

to correctly reproduce the phase diagram of many solids. Examples of situations where

this precision is unavoidable are presented in Chap. 3, Chap. 5 and Chap. 6.

This aspect becomes particularly relevant in order to make QMC methods competi-

tive against other highly correlated techniques. Indeed, at variance from widely used CC

methods (scaling ∼ N5 up to ∼ N7 when including double and perturbative triple excita-

tions) or the FCI approach (exponential scaling), QMC displays a very favorable scaling

of N3-N4 with the number electrons. Thanks to Eq. 2.3, it is evident that using QMC,

chemical accuracy can be attained not only on small molecular models, but on much

larger clusters not feasible with the other methods. This will be extensively discussed in

the next Chapter.

Finally, all the QMC algorithms used in this work obey the so-called zero-variance prin-

ciple, which is a consequence of the general variational principle applied to the evaluation

of quantum expectations. The zero-variance principle establishes an intimate link between

the quality of the trial wavefunction and the efficiency of a QMC simulation. It states that

the statistical error on the final outcome goes to zero in the ideal case of the trial wave-

function ΨT being an exact eigenstate Ψ of the Hamiltonian. Therefore, if 〈ΨT | Ψ〉 ≪ 1,

QMC simulations yield unreliable results affected by a large statistical error. It is not

surprising that the starting ansatz is crucial. Wavefunction optimization methods have

triggered a lot of efforts. The main procedures developed over the past years are efficient

generalizations of Newton and steepest descent techniques for minimizing multivariate

functions and in general they exploit stochastic algorithms.

In conclusion, it is worth noting that QMC techniques remains considerably more

expensive than single-particle approaches such as Hartree-Fock, or effectively indepen-
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dent electron methods such as density functional theory (DFT). Moreover, whereas it is

straightforward to build simple and unbiased statistical estimators for the total energy,

it is not the case for other important quantities such as the electron density or the ionic

forces; also excited states are difficult to obtain and full spectra are not yet available out

of a QMC simulation. However, for all aforementioned features, we believe that this trend

will soon change as more computational power and improved algorithms will be available

over the next decades.

2.1.1 Organization of the Chapter

This Chapter focuses on the QMC methods implemented in the TurboRVB [1] software.

It is organized as follows. In Sec. 2.2 we introduce our DFT implementation on a localized

basis set necessary to obtain an appropriate starting point for correlated QMC calcula-

tions. In Sec. 2.3 we describe a powerful wavefunction ansatz formed by a Jastrow cor-

related factor applied to a multi-configurational antisymmetrized geminal power (AGP).

This highly flexible ansatz includes all flavors of electron correlation and it is expanded

over a localized basis set whereas core electrons of the heavier atoms are replaced by pseu-

dopotentials specifically designed for QMC calculations. The two main QMC techniques

used in this work for evaluating total energies and other observables, i.e. VMC and lattice

regularized DMC (LRDMC), are extensively detailed in Sec. 2.4. Finally, we present an

efficient optimization procedures for both the wavefunction and the nuclear positions in

Sec. 2.5. This energy minimization technique is based on the stochastic reconfiguration

method and, at variance with previous implementations, it extensively uses the adjoint

algorithmic differentiation programming technique for computing wavefunction and local

energy derivatives. Finally, we briefly draw the conclusions of this Chapter in Sec. 2.6.

2.2 Density functional theory on a localized basis set

Calculations with density functional theory represent an essential step towards more ac-

curate QMC simulations. The reason is twofold.

At first place, extensive benchmarks [11, 12] have proven that, compared to Hartree-

Fock or natural orbitals, the DFT eigenstates obtained either with plain local density

approximation or with hybrid energy functionals are the best single-particle starting guess

for building the determinantal part of the QMC wavefunction. Besides the wavefunction,

also the relaxed geometrical structure of molecules and solids at a DFT level is often used

as initial point for QMC calculations, in particular when a correspondent experimental

result is not available.



12 QMC for finite systems

Secondly, the physics extracted from DFT calculations represents an essential prelim-

inary scenario for interpreting the results of more accurate many-body techniques such

as QMC. Due to its higher computational cost, it is nowadays advantageous to use QMC

only to tackle physical problems where the DFT description is not satisfactory and which

does not require a too large number of particles in the simulation model. This is the

case for all applications presented in Chap. 3 and Chap. 6 of this thesis. This trend will

likely change in the near future. With the algorithms available today, DFT will not be

able to benefit of the increased computational power of the next generation supercom-

puters (exascale computing). On the contrary, as already mentioned, QMC methods will

naturally benefit from the very large number of available cores for performing realistic

simulations on systems with up to 104 electrons, at least one order of magnitude more of

the capability of present QMC programs.

At variance with most of the available QMC softwares which rely on external programs,

the TurboRVB code used in this thesis exploits a built-in DFT package which seamlessly

interfaces with the QMC software, thus using the same simulation setup and avoiding any

external tool for wavefunction conversion.

2.2.1 The Kohn Sham equations

DFT is a theory of many-body quantum systems whose purpose is to evaluate electronic

structure properties of atoms, molecules and solids by first principles.

The basic idea of DFT is fundamentally different from wavefunction-based approaches

such as Hartree-Fock configuration interaction as well as QMC methods. Rather than the

ground state many-body wavefunction Ψ(r1, · · · , rN), the main physical object within

DFT is the local electronic density ρ(r), namely the diagonal elements of the one-body

density matrix. This basic quantum mechanical quantity is defined as:

ρ(r) = N
∫

dr2 . . . drNΨ∗(r, r2, . . . , rN)Ψ(r, r2, . . . , rN) (2.5)

where N is the number of electrons in the system. The constitutional tenet of DFT is

that any property of a many-body system can be casted into a functional of the ground

state electronic density ρ0(r). In this way the actual functional form of Ψ(r1, · · · , rN)

becomes irrelevant and needs not to be explicitly specified.

It can be shown that ρ0(r) is uniquely defined by the external potential Vext(r) which,

in absence of external fields, only depends on the considered atomic arrangement (this

goes under the name of V-representability of the electronic density). The demonstration

of this simple yet revolutionary theorem is presented in the original work of Hohenberg

and Kohn in Ref. [13].
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If one considers the part of the quantum Hamiltonian in Eq. 2.2 independent from the

external potential, the above statement implies that it exists a universal density functional

of the energy which can be written as:

F [ρ] = 〈Ψ| T̂ + Ŵ |Ψ〉 . (2.6)

This expression is valid for any external potential Vext(r). By means of a straightforward

application of the variational principle, the DFT ground state energy E [ρ] = 〈Ψ| F [ρ] |Ψ〉+
∫

drρ(r)Vext(r) given a specific external potential Vext(r) is recovered by performing a

global functional minimization of Eq. 2.6 with respect to the electronic density, i.e. ρ(r)→
ρ0(r).

This density based approach for solving the Schrödinger equation is very appealing.

However it has several caveats which would have confined DFT to a merely academic

exercise. On one hand, there are no known recipes for devising the form of the func-

tional E [ρ] which, in addition, is certainly non local. Furthermore, although the ground

state density is in principle sufficient for solving the many-body problem, there are no

meaningful ways for directly extracting physical observables from the electronic density.

The widespread success of DFT is due to the ansatz proposed by Kohn and Sham (KS).

The basic assumptions of KS formalism introduced in their seminal paper in Ref. [14] are

the following:

1. The many-body problem represented by the functional in Eq. 2.6 can be mapped

exactly into a set of single particle equations. These particles are fictitious fermionic

quasi-particles (usually called KS particles) with the sole constraint of possessing,

collectively, the same electronic density ρ(r) of the physical electrons.

2. The KS particles are assumed non-interacting or independent.

Due to their non-interacting nature, we can describe the KS particle with a set of

single-particle orbitals φi(r) with i ∈ [1, Norb]. Notice that these orbitals are defined on

the whole system and thus they are molecular orbitals. Typically, they are expanded over

a suitable basis set (Eq. 2.13). Possible choices for this basis are discussed more in detail

in Sec. 2.2.2. Given these orbitals, the electronic density can be rewritten as:

ρ(r) = 2
∑

i∈occ

|φi(r)|2, (2.7)

where the summation goes over the occupied orbitals. Here, for sake of simplicity, we

focus on the case of doubly occupied orbitals integrating out the electron spin (hence the

factor of 2). The extension to spin polarized systems is straightforward. Since the KS
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particles have the same density as the physical electrons, the functional in Eq. 2.6 can be

written more explicitly as a function of the orbitals φi(r):

F [ρ] =
∑

i

〈φi| −
1
2

∆r |φi〉+
1
2

∫ ∫

drdr′ρ(r)ρ(r′)
|r− r′| + EXC[ρ]

= EKE + EHa[ρ] + EXC[ρ] (2.8)

The first term of Eq. 2.8 is the kinetic energy, the second is the electron-electron repulsive

interaction (or Hartree term); the last term is, by definition, the exchange-correlation

energy EXC[ρ] = EX + Ecorr which includes all the many-body effects not related to the

simple Coulomb repulsion: the exchange contribution EX derives from quantum particles

indistinguishability and the correlation energy Ecorr has been defined in Eq. 2.4. If one

drops the Ecorr contribution and computes EX exactly, DFT reduces to the well-known

Hartree-Fock approximation.

F [ρ] +
∫

drρ(r)Vext(r) can be minimized by taking a variation of the density δρ(r) and

imposing the conservation of the total number of particles, i.e.
∫

drδρ(r) = 0. This

constraint can be taken into account by defining a Lagrange multiplier which fixes the

chemical potential. This leads to the following set of single particle equations usually

called KS equations:

ĤKSφi(r) = ǫiφi(r). (2.9)

The full KS Hamiltonian matrix is defined as ĤKS = δF [ρ]
δρ(r)

+ Vext(r) and it reads:

ĤKS = −1
2

∆r +
∫

dr′ ρ(r)
|r− r′| +

δEXC[ρ]
δρ(r)

+ Vext(r) = −1
2

∆r + Veff(r).

The above equation can be rewritten equivalently as:

ĤKS = H1b + VHa[ρ] + VXC[ρ], (2.10)

where H1b includes one-body contributions, namely the kinetic energy and the external

ionic potential. The set of KS equations is the core of DFT and it is an exact mapping

of the true many-body problem into a single-particle framework subjected to the effective

potential Veff(r). We notice that Eq. 2.9 is formulated as an eigenvalue problem as the

Schrödinger equation of the physical electrons; it can be therefore solved using standard

linear algebra methods for secular equations. The eigenvalues {ǫi} are the electronic

energy levels of the system described by the Hamiltonian ĤKS.

Since KS quasi-particles and real electrons are only linked by the electron ground state

density, the KS spectrum has in principle no physical meaning. However, the true elec-

tronic properties of the system are often very well accounted for by the KS solution. No

rigorous theoretical explanation of this success is available so far.
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It is important to remark that Eqs. 2.9 must be solved self-consistently: at each step the

diagonalization of ĤKS yields new orbitals φi(r) which, in turn, define a new density. This

density is used to construct a new ĤKS and the procedure is repeated until the difference

in total energy or density norm between two steps is below a certain threshold. Once

the DFT procedure is converged, the full many-body wavefunction of the Kohn-Sham

system can be obtain by constructing a single Slater determinant out of the KS orbitals,

compactly written as:

ΨSD(r1, · · · , rN) = det[φi(rj)], (2.11)

where i ∈ [1, Norb] and j ∈ [1, N ].

The most important issue a practical application of KS formulation has to face is that

an exact form of EXC[ρ(r)] functional is not known and thus an approximate expression

must be devised. What EXC[ρ(r)] needs to include in order to capture all the many-body

effects due to exchange and long-range Coulomb interactions is the “holy grail” [15] of

electronic structure calculations.

In this work, we mostly employ the widely used local density approximation (LDA) of

EXC[ρ(r)]. LDA is based on a drastic approximation since it imposes that the dependence

of EXC on the density has only a local character, which is wrong even at the simple

exchange level. The LDA exchange correlation functional reads:

ELDA
XC [ρ] =

∫

drρ(r)Eloc(ρ(r)). (2.12)

The local exchange-correlation functional Eloc is obtained by fitting a set of QMC cal-

culations on the homogeneous electron gas model at different densities [16, 17]. This is

actually one of the first and most successful applications of QMC in electronic structure

calculations. LDA has given impressively good results on a wide range of systems and

this justifies its popularity. However, there are many situations where more complicated

expressions based on the gradient of the density ρ(r) must be employed for achieving the

best result.

2.2.2 Kohn-Sham problem on non-orthogonal basis set

The choice of the DFT basis set to expand KS eigenvectors should be very flexible. The

most successful functional form is certainly the plane wave (PW) basis set [18, 19]. PWs

do not depend on any input parameter and they are very cheap to evaluate, therefore the

complete basis set (CBS) limit can be systematically reached. Furthermore, their accuracy

can be arbitrarily tuned by cutting off the PW expansion beyond a certain cutoff energy.

PWs are suitable for open systems and also for solids with small simulation cells, since

they naturally satisfy the Bloch theorem (see Chap. 4 for more details). However, for
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extended periodic systems they can become inefficient when using sizable simulation cells

since, in this case, the number of PWs needed in the expansion grows proportionally to

the system size.

In the case of correlated techniques such as QMC, the choice of the basis set is more

delicate due to its higher computational cost. For instance, PWs expansion of single-

particle orbitals is not convenient in QMC since its computational cost grows as O(N3)

with a prefactor which depends on the PW cutoff [20]. Despite recent improvements

on the PWs side [21], the most common solution in QMC is the use of atomic localized

orbitals. This form is often used in quantum chemistry since they yield an intuitive

picture of the inter-atomic chemical bonds and they give a better description of the atomic

limit. Modern QMC approaches typically use localized orbitals with Slater type (STOs),

Gaussian type (GTOs) or more evolved schemes based on localized splines expansion [20,

22].

In our implementation, we use a localized basis set with GTOs. For seamlessly inter-

facing with the QMC software, we use the same basis set in the built-in DFT package.

In order to cope with this choice, suitable algorithms must be devised to diagonalize the

KS Hamiltonian within a non-orthogonal basis set, as presented in this Section.

Atom centered Gaussian basis set

We expand the KS single particle orbitals φi(r) (Eq. 2.9) onto a localized basis set χi(r):

φi(r) =
Ntot∑

j

cijχj(r) with i ∈ [1, Norb], (2.13)

where Norb ≤ Ntot is the number of KS orbitals which depends on the number of electronic

energy levels to be computed, and Ntot is the total basis dimension. The generalized index

j are defined as j = (µ, a) where a ∈ [1, Nat] goes over the atomic sites and µ ∈ [1, Nbas]

spans the atomic basis set dimension. We assume for simplicity that every atom has the

same basis set. Hence the total basis dimension is given by: Ntot = Nbas ×Nat.

The functions {χj(r)} can be STOs or GTOs or mixed forms. We will focus on GTOs

which have been thoroughly employed for the results presented in this thesis. They are

centered on the atomic positions {R} and they have the following form:

χaµ(r) = χa(l,m,n) ∝ |r−Ra|le−ζl,n|r−Ra|2Yl,m(Ωr−Ra
), (2.14)

where m ∈ [−l, l] and n ∈ [1, nl]. {l,m} are the angular momentum quantum numbers,

nl identifies the number of Gaussians for each angular momentum shell and Yl,m(Ω) are

the cubic harmonics defined as real-valued linear combinations of spherical harmonics.
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Thanks to this choice, the orbitals are eigenfunctions of the angular momentum op-

erators l̂2, ensuring the rotational invariance of the resulting wavefunction around the

nucleus. The basis set is thus fully determined by the number of Gaussian per angular

momentum channel and their exponents ζ . These values can be taken from available

databases [23, 24] or they can be built from scratch. In the latter case, the basis expo-

nents and coefficients are initially optimized by DFT(LDA) energy minimization with a

manual procedure before starting QMC calculations. It is therefore useful to express the

basis set in an even tempered form, namely for each angular momentum l the exponents

of the Gaussians are written as a power series: ζl,n = αlβ
n−1
l for n = 1, . . . , nl. This

allows a reduction of the number of parameters to optimize, as for each shell l the full

ζl,n series is fixed just by three values: αl, βl, and nl. This choice is adopted to define an

optimized primitive basis set for water molecule and proton transfer systems presented

in Chap. 3. In other cases (Chap. 5 and Chap. 6) the basis is taken from databases and

often optimized directly at a QMC level.

The formalism presented in this Section is valid for open systems which require real-

valued orbitals. The extension of this basis set for constructing complex-valued wavefunc-

tions suitable for periodic solids is described in Sec. 4.2.

Generalized eigenvalue problem

The major difficulty to solve the KS equation within a localized basis is that the orbitals

in Eq. 2.14 are non orthogonal. In this situation, we define the basis set overlap matrix

of dimension Ntot ×Ntot as:

Sij =
∫

dr χi(r)χj(r) = 〈χi| χj〉 , (2.15)

where we used the fact that χi orbitals are real-valued. Being an overlap matrix, S = {Sij}
is positive definite. Notice that in this equation the spin is integrated out; in the case of

periodic systems, the spin dependence will be explicitly kept (see Sec. 4.2). Analogously,

we can define the KS Hamiltonian (Eq. 2.10) matrix elements as:

HKS
ij = 〈χi|H1b |χj〉+ 〈χi|VHa[ρ] + VXC[ρ] |χj〉 = SHij + Vij [ρ]. (2.16)

Thanks to the properties of the Gaussian functions, the integrals involved in the defini-

tion of S = {Sij} and HKS = {HKS
ij } matrices can be computed analytically or semi-

analytically and their computation can be efficiently parallelized as, for instance, imple-

mented in the Crystal code [25]. However, in our approach we opt for representing the

electronic density ρ(r) and the wavefunction on a real space grid. The integrals can then

be directly evaluated by an appropriate summation over the mesh points, except for the
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Hartree term VHa which is computed as a convolution in Fourier space [26]. While ob-

viously less efficient than the analytical evaluation, the grid approach is more general

since it can be readily applied to non Gaussian orbitals; furthermore the computational

cost can be also greatly reduced by casting the integration procedure on few fast matrix-

matrix multiplications; finally, since we use cubic meshes only, the parallelization on one

grid direction is straightforward to implement. There is no need for more complicated

parallelization schemes as each integration point is independent from the others due to

the locality of the KS Hamiltonian.

We define a mesh with dimension Nm = Nx×Ny ×Nz and volume Lm = Lx×Ly ×Lz
where x, y, z are the Cartesian directions. To avoid possible divergences in the integrals

due to electron-ion coalescence at grid points, the origin of the mesh is chosen such that

the minimum distance of grid points from ionic positions is maximized. The size Nm

of the grid represent an important input parameter which provides a fine control on

the accuracy of the DFT energy and which must be carefully assessed to find the best

compromise between precision and computational cost. For large grids, a memory buffer

is required to avoid storing the whole set of mesh values during the run. Notice that,

since the basis set does not change during the self-consistent DFT cycle, the density

independent matrices S and SH can be computed once for all at the initialization stage.

If we define the vectors Ci = {cij} containing the coefficients of the KS eigenvectors

in the localized basis and we plug Eq. 2.13 into Eq. 2.9, the KS problem reduces to the

following secular equation:

HKSCi = ǫiSCi with i ∈ [1, Norb] (2.17)

Eq. 2.17 is a generalized eigenvalue problem. Differently from orthogonal basis sets where

S = I, the stability of the numerical solution of Eq. 2.17 is strongly dependent on the

overlap matrix condition number defined as the ratio between its largest and its lowest

eigenvalues (ordered in ascending order):

scond =
sNtot

s1
.

If this ratio is too large the KS problem is ill-conditioned, thus a very small change in the

initial conditions leads to large and unpredictable errors on the diagonalization result and

to inaccurate or garbage eigenvectors. This issue is even more significant when large basis

sets are used and therefore it often prevents from reaching the CBS limit. This represents

a strong limitation on the precision of the DFT wavefunction and, by consequence, on the

quality of the corresponding QMC calculation. In fact, in many physical situations the

basis set superposition error arising from a small basis set size dramatically deteriorates

the description of the chemical bonds [26, 27].
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Diagonalization algorithm

The accuracy and stability of the numerical solution of Eq. 2.17 can be considerably

enhanced by applying the diagonalization algorithm introduced in Ref. [26]. This is

composed by the following steps:

1. the overlap matrix S (generally ill-conditioned, in particular with a large basis set)

is initially diagonalized with standard linear algebra methods [28] without special

requirements. If the ith eigenvalue in the overlap spectrum is small, i.e. the ratio

si/sNtot is of the order of the machine precision (typically ∼ 10−16), it is disregarded.

In this way we are neglecting singular directions in the space generated by the overlap

matrix which would lead to garbage eigenvalues in the Hamiltonian diagonalization.

The non-singular directions are defined by the transformation:

ui1 =
1√
si

vi (2.18)

where vi are the eigenvectors of S and si/sNtot ≥ 10−16.

2. The initial S is rewritten in the basis U1 defined by the transformation in Eq. 2.18.

The new overlap matrix S̃ = UT
1 SU1 is well-conditioned and easy to diagonalize.

3. The diagonalization of S̃ yields a new transformation which we denote as U2 and

which is constructed in the same way as Eq. 2.18:

ui2 =
1√
s̃i

ṽi (2.19)

4. The global transformation U = U1U2 generated by the two consecutive diagonaliza-

tions of S and S̃ is then applied to the KS Hamiltonian as follows:

H̃KS = UTHKSU. (2.20)

The final matrix H̃KS possesses the same spectrum of the initial Hamiltonian ĤKS,

since the transformation U is unitary, but it is now well-conditioned since singu-

lar directions have been eliminated. Eigenvalues and eigenvectors of H̃KS are the

solution to the generalized KS problem in Eq. 2.17.

The above diagonalization algorithm is applied at each step of the DFT self-consistent

cycle and it allows to safely and efficiently work with large basis sets, as extensively

demonstrated in Ref. [26]. The KS eigenvectors obtained from the converged calculation

are used to build the determinant in Eq. 2.11 which constitutes the starting guess for the

determinantal part of the QMC ansatz. This is the subject of the next Section.
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2.3 The JAGP variational wavefunction

Since the discovery of high-temperature superconductivity in copper oxides materials [29],

it became apparent the deficiency of single-particle techniques in the description of strongly

correlated materials. This evidence gave a new impetus in the research on explicitly cor-

related methods, at first for solving lattice models connected with superconductivity, such

as the multi-band Hubbard model, and afterwards also for tackling realistic systems from

first principles.

Within wavefunction based methods, the most important mathematical object is the

Slater determinant (SD), introduced in this context for the first time to construct the

well-known Hartree-Fock (HF) approximation and used as many-body wavefunction for

any independent or single-particle electron theory. We introduce this functional form in

Eq. 2.11 in the context of DFT calculations.

Using the SD as ansatz for solving the many-body Schrödinger equation is convenient

since it naturally includes effects arising from the antisymmetry of the many-body wave-

function. However, electronic repulsion due to long-range Coulomb electron-electron in-

teraction is taken at the HF level and the correlation energy is zero. There are many

ways for improving the SD in order to cure this problem. One widely used solution is

to build the wavefunction as a linear combination of Slater determinants such in the

aforementioned CC and CI methods. This approach relies on the fact that the full set of

determinants constitutes a complete basis set of the whole Hilbert space.

Here we describe an alternative route. Our strategy is based on the so-called resonating

valence bond (RVB) approach. RVB has been introduced for the first time in aromatic

molecules by Pauling [30] and then generalized to describe metallic systems [31]. The

main concept behind RVB is that singlet electron pairs forming a chemical bond be-

tween two distinct atomic sites can be subjected to an unsynchronized resonance. The

superposition of these resonating bonds propagates through the molecule or the crystal

and it ensures the stabilization of the electronic state if compared with the simple, non

resonating HF approximation, as shown by numerical estimations of the resonance or con-

densation energy. Anderson [32] provided a rigorous mathematical framework for RVB

theory suggesting that it could explain the physics of strongly correlated Mott insula-

tors. Furthermore, the RVB state can support charged bosonic excitations with zero spin.

Since such excitations could exist also at high-temperature, Anderson speculated that

they could be the cause of the high-temperature superconductivity displayed by copper-

oxides compounds [33] whose parent compound is a Mott insulator. He hypothesized that

the coupling between copper and oxygen atoms could be a realization of the RVB state,

however an experimental evidence of this speculation has not been found yet.
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Within the second quantization formalism, the compact representation of the RVB state

devised by Anderson reads:

|ΨRVB〉 = P̂N |ΨBCS〉 = P̂N
∏

k

(uk + vkc
†
k,↑c

†
−k,↓) |0〉 . (2.21)

The function |ΨBCS〉 is the variational ansatz proposed by Bardeen, Cooper and Schrieffer

for the theory of conventional superconductivity [34]. The operator P̂N is a Gutzwiller

projector defined as:

P̂N =
∏

k

(1− nk↑nk↓) , (2.22)

where nkσ = c†
k,σck,σ is the electron number operator in Fourier space. The role of this

operator is to keep a fixed number of particles and forbid double occupancies of sites, thus

freezing the charge fluctuations in the system allowed by the BCS ansatz.

By performing the Fourier transform of Eq. 2.21 we obtain its real space representation

in a Hilbert space with fixed number N of electrons:

|ΨRVB〉 = P̂N |BCS〉 = P̂N




∑

r,r′

Φ(r− r′)c†
r,↑c

†
r′,↓





N/2

|0〉 . (2.23)

The electron pairing function Φ(r − r′), alternatively known as geminal, is the Fourier

transform of uk/vk and it correlates two electrons belonging to the spin singlet representing

the valence bond linking two generic lattice sites. We notice that the ansatz proposed by

Anderson is composed by two factors: a product of pairing functions and a Gutzwiller

projector operator.

Let us now consider the typical form of the QMC ansatz. In the following, we describe

the N electrons of the system with the generalized coordinates {xi = (ri, σi)}, grouping

positions and spins. We restrict our discussion to a spin unpolarized (N↓ = N↑ = N/2)

state. The extension of the formalism presented in this Section to the spin polarized case

is not treated here, but the interested reader can refer to Refs.[35, 36, 37]. The standard

functional form of a QMC trial wavefunction is defined as:

Ψ(x1, · · · ,xN) = exp(−J(r1, · · · , rN))×ΨD(x1, · · · ,xN). (2.24)

where J(r1, · · · , rN) is a bosonic factor, the so-called Jastrow factor, whereas the function

ΨD(x1, · · · ,xN) is an antisymmetric fermionic factor which ensures the right wavefunction

symmetry and it is generally referred as determinantal part. The Jastrow antisymmetrized

geminal power (JAGP) wavefunction employed in this thesis is an elegant and compu-

tationally efficient implementation of Eq. 2.23 in the context of realistic ab initio QMC

calculations based on the ansatz of Eq. 2.24. This analogy will be explained in detail in

the remaining part of this Section.
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2.3.1 Multi-configurational AGP ansatz

We first describe the determinantal part ΨD(x1, · · · ,xN) of Eq. 2.24. The antisymmet-

ric product of equal geminals, or antisymmetric geminal power (AGP) wavefunction, is

formally written as:

ΨAGP(x1, · · · ,xN) = Â
[

Φ(x1,x2) Φ(x3,x4) . . . Φ(xN−1,xN)
]

(2.25)

where Â is an operator that antisymmetrizes the pairing product. The pairing func-

tion Φ(xi,xj) of two generic electrons i, j can be factorized into a symmetric radial part

correlating two electrons and an antisymmetric spin singlet factor:

Φ(xi,xj) = Φ(r↑
i , r

↓
j) = Φ(ri, rj)

δ(σi, ↑)δ(σj , ↓)− δ(σi, ↓)δ(σj , ↑)√
2

. (2.26)

Within this representation, the AGP has a very compact and computationally convenient

expression [38] which generalizes the concept of SD to a pair of electrons:

ΨAGP(x1, · · · ,xN) = det
[

Φ(xi,xj)
]

= det [Ai,j] . (2.27)

Notice that here we set Â equal to the determinant for applying the antisymmetrization,

but for instance a Pfaffian operator could have been chosen instead [39]. It has been

demonstrated [38] that the AGP wavefunction is equivalent to the particle-conserving

version of the BCS ansatz introduced in Eq. 2.21. This is therefore the first building

block of the aforementioned analogy between JAGP and RVB wavefunctions.

Within a finite basis set calculation, the AGP can be expressed in two equivalent

forms. We call the first one valence bond (VB) representation since it focuses on the RVB

picture underlying the physics of this ansatz. In this context, the radial pairing function

is expanded over the atom centered basis set {χaµ(r)} introduced in Eq. 2.14:

Φ(r, r′) =
Ntot∑

i,j

λij χi(r) χj(r′) =

=
Nat∑

a,b

Nbas∑

µ,ν

λa,bµ,ν χ
a
µ(|r−Ra|) χbν(|r′ −Rb|). (2.28)

The total number of variational parameters of the ansatz within the VB representation

is thus given by: PVB ∝ Ntot ×Ntot.

The matrix Λ = {λa,bµ,ν} defines the weights of each orbital in the expansion and it has

a direct link to the RVB picture. In fact, the Λ matrix elements connect different atoms

within the system, giving the strength of the valence bond between two sites restricted to a

specific element of the basis set. Besides giving an accurate picture of the chemical bonds,
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the Λ matrix allows to simply fulfill other symmetries of the system, such as inversion or

reflection, by setting appropriate equalities among elements connecting different orbitals.

In this work, we usually employ a symmetric Λ matrix, while the formalism presented

here holds, with slight modifications, also for generic non-symmetric arising from the

inclusion of unpaired electrons Λ [36, 37]. As explained in Sec. 4.3.3, the mathematical

framework used for non-symmetric geminal matrices is exploited also for generalizing the

AGP wavefunction to the study of periodic solids.

Another representation of the pairing function can be obtained by expanding Φ(r↑
i , r

↓
j)

over molecular orbitals (MOs). Within the MO representation, Eq. 2.28 reads:

Φ(r, r′) =
NMO∑

j

λMO
j φMO

j (r)φMO
j (r′) (2.29)

where the functions φMO
j (r) are developed over the same localized basis set used for the

VB representation:

φMO
j (r) =

Ntot∑

i

cjiχi(r). (2.30)

The total number of variational parameters of the ansatz in the MO representation is

given by: PMO ∝ Ntot ×NMO.

One can easily pass from VB to MOs representations simply by diagonalizing the gem-

inal matrix Λ. Vice-versa, one can retrieve the full Λ matrix by expanding the molecular

orbitals in their local basis set components through the following transformation:

λij =
[

C†ΛMOC
]

ij
, (2.31)

where C = {cji} is a matrix constructed with the MOs coefficients. The VB and MO

representations are equivalent if one choose as many molecular orbitals as the number of

basis functions, i.e. NMO = Ntot, while in the case of NMO < Ntot, Eq. 2.29 is just an

approximation of the complete pairing function in Eq. 2.28.

However, retaining the largest eigenvalues λMO
j of the geminal matrix is typically suffi-

cient to obtain very accurate pairing functions and at the same time reduce the number

of MOs. This choice is very convenient since the number of variational parameters of the

ansatz can be greatly diminished: NMO ≪ Ntot =⇒ PMO ≪ PVB. It can be proven [36]

that by keeping only the first NMO = N/2 eigenvalues, i.e. the lowest allowed rank of

the Λ matrix, the determinant of Eq. 2.27 is equivalent to the SD wavefunction. The

uncorrelated HF ansatz is therefore contained within the AGP wavefunction as a special

case.

Hence, the formalism presented here allows to have a fine control on the level of electron

correlation, by smoothly transitioning from the independent-particle wavefunction to the
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fully multi-configurational case. In fact, by adding to the geminal expansion in Eq. 2.29

additional MOs, the lower excited states come into play and contribute to decrease the

total variational energy. The system is thus "resonating" among different configurations:

the Fermi liquid ground state taken from the DFT wavefunction in Eq. 2.11 and an

appropriate number of excited states, represented by the additional MOs introduced with

a small weight. This procedure is fundamental in order to obtain a reliable description

of systems displaying nearly-degenerate energy levels around the HOMO/LUMO gap (or

the Fermi level in case of solids), all contributing to the true ground state; in this case

the AGP wavefunction is equivalent to a linear combinations of SDs, each containing one

degenerate or near degenerate orbital [35]. The AGP ansatz is thus particularly suitable

for dealing with static electron correlation. Last but not least, the AGP wavefunction is

also very convenient from a computational point of view. In fact the cost of AGP remains

equal to the evaluation of a single determinant (∼ N3 scaling with the number electrons)

as in Eq. 2.27 even in the multi-reference case, namely when NMO > N/2 molecular

orbitals are included in the simulation.

2.3.2 The missing ingredient: Jastrow factor

All determinantal wavefunctions such as the HF Slater determinant suffers from the ab-

sence of a correlation hole for electron pairs. This can lead to large energy fluctuations

due to the Coulomb repulsion. In order to damp these fluctuations, it is common practice

to multiply the determinantal part by a bosonic Jastrow factor. The Jastrow plays the

role of the Gutzwiller projector in Eq. 2.23 and it disfavors double occupations of the

orbitals. The analogy between JAGP and the RVB representation proposed by Anderson

is thus complete.

Complementary to AGP, the Jastrow term is constructed to include dynamical electron

correlation, i.e. the fraction of the correlation energy derived from charge (and thus spin)

spatial motion in the system. This ensures an accurate treatment of weak intermolecular

forces as Van der Waals interactions [40]. Furthermore, the Jastrow is tailored to solve

the problem of wavefunction cusp conditions [41] affecting all approximate wavefunctions.

Cusp conditions are constraints imposed on the derivatives of the many-body wavefunc-

tion at electron-ion and electron-electron coalescence points (namely when inter-particle

distance r → 0). They neutralize the divergence of the electron-ion and Coulomb po-

tentials at the coalescence points by forcing an equivalent and opposite divergence in the

kinetic energy, as it is automatically realized with the exact wavefunction. When the

correct cusps are enforced into the variational ansatz, the rate of convergence of JAGP

in the basis is much increased. Therefore the inclusion of a Jastrow factor, although re-
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sulting in a larger number of variational parameters, brings great benefits in term of the

final cost of wavefunction evaluation. Furthermore, when selecting a Slater determinant

as antisymmetric part of the ansatz, the Jastrow represents the only way to go beyond

HF and include electron correlation in the system.

Since it represents an essential part of the ansatz, we choose to define the Jastrow

factor in a compact but complete way which takes into account the most relevant electron

interactions. The general functional form of our Jastrow reads:

J(r1, · · · , rN) =
Nat∑

a

N∑

i

g1body
a (ri −Ra) +

N∑

i6=j

g2body(ri, rj). (2.32)

The first term g1body(r−R) is usually referred as one-body term and it is divided into

two separate contributions:

g1body
a (r−Ra) = va(ra) +

Nbasj
∑

µ

Gµ
aχ

a
µ(r−Ra), (2.33)

where ra = |r −Ra| are the electron-nucleus distances. v(r) is a homogeneous function

designed to impose the right nuclear cusps for curing electron-ion potential divergences:

v(r) = Z
1− e−β 4

√
(2Z)r

β 4

√

(2Z)
. (2.34)

In Eq. 2.34 β is a parameter which is variationally tuned during the energy minimization

procedure (see Sec. 2.5).

The second term in the right hand side of Eq. 2.33 recovers most part of the energy

coming from the electron-ion interaction. As for the pairing function introduced in the

previous section, this factor is expanded over a localized basis set χaµ(r−Ra) of dimension

Nbasj possessing the functional form introduced in Eq. 2.14. Besides ensuring a great level

of flexibility during the wavefunction optimization, this choice does not affect the cusp

conditions introduced by Eq. 2.34 since the localized orbitals smoothly reach a constant

value faster than linearly when approaching the nucleus.

The many-body g2body(r, r′) factor is composed by a homogeneous and non-homogeneous

parts:

g2body(r, r′) = u(r) + (2.35)

+
Nbasj
∑

µ,ν

Nat∑

a,b

Ca,b
µ,ν χ

a
µ(r−Ra)χbν(r

′ −Rb) + (2.36)

+
Nbasj∑

µ,ν

Nat∑

a,b

Sa,bµ,ν χ
a
µ(r↑ −Ra)χbν(r

′↓ −Rb) (2.37)
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where r = |r − r′| is the electron-electron distance. The homogeneous term in Eq. 2.35

cures the Coulomb potential divergences at r → 0 by imposing the correct electron-

electron cusp conditions. We choose the following simple form for the u(r) function:

u(r) =
1
Aγ

(1− e−γr). (2.38)

In this equation γ is again an optimizable variational parameter. The scaling factor A is

analytically determined by the cusps. It is always equal to 1/2 when only the unlike-spin

contribution is considered. If this is not the case, A takes the values of 1/2 for unlike

spin and 1/4 for like spin electron pairs; however this could lead to an undesired mixing

of different electronic spin states, an effect usually known as spin contamination.

The remaining terms constitute an essential part of the many-body wavefunction. They

are non-homogeneous as they are explicitly built upon space-space correlators between

different atomic sites. The first term (Eq. 2.36) accurately includes long-range dipole-

dipole interactions within the QMC ansatz. Thanks to its development over the same

atomic basis set of size Nbasj as the one-body term, it correlates single-particle orbitals

describing electrons on the same or on different atomic sites. The spin is integrated out

from Eq. 2.36 and therefore this term deals only with the charge sector. When spin fluc-

tuations are relevant for the physical situation under investigation, the inclusion of a spin

dependent part to the many-body Jastrow term may considerably improve the variational

energy of the system. This is the case, for example, of the iron-based superconductor FeSe

presented in Chap. 6. This term is defined in Eq. 2.37 and it acts as correlator for elec-

trons with opposite spin. In principle, it allows to recover the amount of correlation

energy coming from short to long ranged spin-spin interactions. The implementation of

this term is completely analogous to the charge sector one.

2.3.3 Functional forms of the ansatz

In conclusion, we report here the two many-body wavefunctions we employ throughout

this thesis. They are the Jastrow-antisymmetrized geminal power (JAGP) ansatz (used

for the results in Chap. 3 for open systems) which reads:

ΨJAGP(x1, · · · ,xN) = exp [−J(r1, · · · , rN)] det [Φ(xi,xj)] (2.39)

ΨJAGP = exp [−J(Rel)]× Â
[

Φ(r1, r2) Φ(r3, r4) . . . Φ(rN−1, rN)
]

(2.40)

where (i, j) ∈ [1, N ] and the pairing function Φ(x,x′) has been defined in Eq. 2.26. The

second form is the Jastrow-Slater determinant (JSD) wavefunction (used for the results in
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Chaps. 5 and 6 for extended systems), obtained from JAGP by truncating the molecular

orbitals expansion to NMO = N/2. JSD wavefunction can be compactly expressed as:

ΨJSD(x1, · · · ,xN) = exp [−J(r1, · · · , rN)] det[φi(r
↑
j)] det[φi(r

↓
j)] (2.41)

with i ∈ [1, NMO] and j ∈ [1, N ].

2.4 Evaluating physical observables within QMC

2.4.1 Variational Monte Carlo

Basic idea

VMC is the simplest application of Monte Carlo integration to the quantum problem and

its first application to fermionic systems dates back to the work of Ceperley et al. in

1977 [42]. We consider a real-valued antisymmetric trial wavefunction ΨT (r1, · · · , rN) =

〈r1, · · · , rN | ΨT 〉 with a generic functional form. The quantum expectation of the many-

body Hamiltonian Ĥ (Eq. 2.2) over the trial ΨT reads:

〈Ĥ〉 = EVMC =
∫

dRelΨT (Rel)ĤΨT (Rel)
∫

dRelΨ2
T (Rel)

, (2.42)

where Rel = (r1, · · · , rN). For the sake of clearness, spin is omitted from the following

discussion. The variational principle establishes that Eq. 2.42 is an upper bound to the

true ground state energy, i.e. EVMC ≥ E0.

Elementary algebra allows to recast Eq. 2.42 in the following form:

EVMC =
∫

dRel
Ψ2
T (Rel)

∫

dR′
elΨ

2
T (R′

el)
︸ ︷︷ ︸

distribution: π(Rel)

local energy: eL(Rel)
︷ ︸︸ ︷

ĤΨT (Rel)
ΨTRel

=
∫

dRel π(Rel)eL(Rel) = 〈eL〉 ≥ E0. (2.43)

Eq. 2.43 is very convenient since it is an importance sampling transformation of Eq. 2.42.

Importance sampling is widely employed in Monte Carlo based techniques since it allows

to dramatically decrease the number of stochastic steps needed to attain a certain accuracy

by drawing configurations from an appropriately chosen probability distribution, the so-

called importance sampling distribution.

In Eq. 2.43 the importance sampling distribution is represented by the function π(Rel),

i.e. the normalized probability amplitude given by Ψ2
T . The local energy eL(Rel) =
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ĤΨT (Rel)
ΨT Rel

arising from the importance sampling is simple to evaluate and its computational

cost only depends on the cost of evaluating the ansatz ΨT . Notice that if the trial

wavefunction is an eigenstate of Ĥ , the local energy is equal to the exact ground state

energy independently of the chosen configuration. This demonstrates that the VMC

method satisfies the zero-variance property mentioned in the introduction to this Chapter.

The probability distribution π(Rel) is sampled by means of the standard Metropolis-

Hastings algorithm introduced in Ref. [43] in 1953. This procedure allows to sample any

probability distribution by generating a Markov stochastic process – or Markov chain –

in the 3N -dimensional space of electronic positions. Thanks to the properties of Markov

chains, a new random point in the configurational space only depends on the previous

configuration adopted by the system, i.e. the stochastic process has no memory.

At each step of the Markov process, a new configuration is generated by performing

a single electron move. This move is accepted or rejected according to the Metropolis

rule [43]; then the VMC energy is evaluated using Eq. 2.43 accumulating statistics until

the desired accuracy is attained. A single electron move is preferable with respect to

global displacements since the operations needed to update the wavefunction can be cast

into fast matrix-matrix multiplications and reduced by means of the Sherman-Morrison

formulaa. The efficiency of the sampling can be further increased if the amplitude of the

single electron move is adjusted depending on the distance with the nearest nucleus: if

the electron is far from the ion, it moves with a step larger than the one of an electron

closer to a nucleus. Furthermore, when the system is composed by two distant fragments,

such as in the computation of dissociation limits (see for instance Sec. 3.3.2), large moves

from one fragment to the other are allowed after a certain amount of MC samples.

Estimators in VMC

Given a finite number M of Monte Carlo generations, i.e. drawn configurations along the

Markov chain, the expectation value of any operator Ô representing a physical observable,

in analogy with Eq. 2.42, can be evaluated as:

OVMC = 〈ÔL〉 =
1
M

M∑

i=1

ÔL(Ri
el). (2.44)

aGiven the invertible square matrix A representing the determinant and the two column vectors u

and v constituting a rank-1 update of A (hence a single-electron move), the Sherman-Morrison formula
reads:

(A + uvT )−1 = A−1 +
A−1uvT A−1

1 + A−1uvT
.

Notice that the inverse A−1 has already been computed in the previous MC generation.
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where ÔL = ÔΨT/ΨT is the local variant of the operator. Eq. 2.44 is the sampling average

of ÔL over the stochastic process and it is therefore an unbiased estimator of the true

expectation value of Ô thanks to the central limit theorem. An unbiased estimator of the

variance σ2[OVMC] is given by:

σ2[OVMC] =
σ2[ÔL]τc
M

=
τc
M

[

〈Ô2
L〉 − (〈ÔL〉)2

]

, (2.45)

where σ2[ÔL] is the variance on single measurement and τc is the autocorrelation time

between two generic MC steps defined as:

τc = 1 +
2

σ[ÔL]M

∑

i<j

Cov
[

ÔL(Ri
el), ÔL(Rj

el)
]

, (2.46)

which is equal to 1 in the ideal case of uncorrelated measurements, namely when it

holds: Cov
[

ÔL(Ri
el), ÔL(Rj

el)
]

= 0 ∀ (i, j). As already mentioned, it is evident that the

statistical error can be adjusted below the desired accuracy by increasing the length M

of the simulation.

In practical calculations, the number of samples M over which the expectation values

are computed is restricted to a fixed block size Mb < M in order to reduce autocorrelation

time. The estimation of the final value is obtained by averaging over the blocks (blocking

technique). The bootstrap resampling method is used on the block averaging to ensure a

further reduction of the serial correlation among MC samples.

2.4.2 Diffusion Monte Carlo

Basic idea

VMC method is elegant and simple to implement, however its outcome strongly depends

on the quality of the variational wavefunction, namely on its functional form, on the basis

set size and on the level of optimization of the whole set of variational parameters. In

order to systematically improve the VMC energy and reduce at most the dependence of

the final result on the trial wavefunction ΨT , one can rely on the projector Monte Carlo

class of algorithms. Here we describe a particular implementation of projector MC which

it is known as diffusion Monte Carlo technique [3].

Let us call Ψ0 the ground state eigenstate of the QMC Hamiltonian Ĥ . DMC starts from

realizing that the exact ground state energy E0 can be obtained from a mixed expectation

value defined as follows:

E0 =
〈Ψ0| Ĥ |ΨT 〉
〈Ψ0| ΨT 〉

. (2.47)
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However, this expression requires to access the exact ground state Ψ0. One way to

achieve this is by evolving the trial wavefunction along the imaginary time (t → −it)
axis. This is realized by the repeated application of the time evolution operator to ΨT :

ΨG(Rel, t) = e−[Ĥ−Λ(t)]tΨT (Rel). (2.48)

ΨG(Rel, t) is the formal solution of the imaginary time Schrödinger equation associated

with the Hamiltonian Ĥ. The time dependent parameter Λ(t) is an energy offset whose

role will be elucidated later on and the ansatz ΨT is usually referred to as guiding wave-

function. By expanding Eq. 2.48 over the Hamiltonian eigenstates, it is straightforward

to show that the infinite time limit of Eq. 2.48 is dominated by the Hamiltonian lowest-

energy eigenstate Ψ0 with finite overlap with the initial ΨT .

Using Eq. 2.48, we can define the following mixed expectation:

EDMC =
〈ΨG| Ĥ |ΨT 〉
〈ΨG| ΨT 〉

=
∫

dRel
ΨG(Rel, t)ΨT (Rel)

∫

dR′
elΨG(R′

el)ΨT (R′
el)

︸ ︷︷ ︸

distribution: π̃(Rel,t)

local energy: eL(Rel)
︷ ︸︸ ︷

ĤΨT (Rel)
ΨT (Rel)

=

=
∫

dRel π̃(Rel, t)eL(Rel) = 〈eL〉 (2.49)

which coincides with Eq. 2.47 in the infinite time limit. Notice that Eq. 2.49 is an

importance sampling transformation for the Hamiltonian expectation value, obtained by

operating the substitution: Ψ2
T → ΨGΨT . Eq. 2.49 shares the same properties of the VMC

analog (Eq. 2.43) such as the zero-variance character, and it can be evaluated in exactly

the same way (Eqs. 2.44, 2.45). The sole difference among the two methods is represented

by the distribution π̃(Rel, t) to be sampled. However, we show in the following that this

aspect requires a distinct stochastic algorithm to evaluate Eq. 2.49.

The fixed node approximation

In order to interpret π̃(Rel, t) as a probability distribution, it must be positive everywhere.

However, this is not verified by a fermionic wavefunction as ΨT which must possess positive

and negative regions in order to fulfill the antisymmetric property dictated by the Pauli

principle. Phase space regions where the wavefunction has the same sign are generally

called nodal pockets and their exact position is an unknown property of the exact ground

state which depends on the many-body physics of the system.

This issue would make the stochastic evaluation of Eq. 2.49 impossible except for special

cases where the correct nodal structure can be determined by symmetry considerations.

A simple but effective workaround is the so called fixed node (FN) approximation [16]. For
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a local Ĥ, this procedure consists in constraining the importance sampling distribution

inside a nodal pocket of the many body wavefunction which translates in the following

inequality for the unormalized distribution f(Rel, t) to be sampled:

f(Rel, t) = ΨG(Rel, t)ΨT (Rel) ≥ 0 ∀ Rel and t. (2.50)

Under the FN constraint, the projection in Eq. 2.48 is approximated also in the infinite

time limit, unless the trial wavefunction possesses the same nodal structure as the true

ground state. The variational principle still holds within the FN approximation.

Notice that Eq. 2.50 is valid only for real-valued wavefunctions and in the case of

extended systems the FN approximation must be generalized, as discussed in Sec. 4.4.

The standard DMC algorithm

Given the importance sampling transformation within the FN approximation, the imagi-

nary time Schrödinger equation associated to f(Rel, t) can be written as follows:

−∂f
∂t

= −1
2

∆Rel
f(Rel)

︸ ︷︷ ︸

diffusion

+∇Rel
· [vD(Rel) f(Rel)]

︸ ︷︷ ︸

drift

+

branching
︷ ︸︸ ︷
[

eL(Rel)− (1 +
∂

∂t
)Λ

]

(2.51)

where the quantity vD(Rel) = ∇Rel
ln ΨT is referred as drift velocity. Eq. 2.51 can be

interpreted as a master equation for the probability distribution f(Rel, t); in fact it can

be directly linked with a physical process of particles diffusion: the first term is a pure

diffusion term; the second one is a factor representing a drift in the particles trajectories

characterized by the velocity vD; the last term models particles which enter (birth) and

exit (death) the simulation and it is thus equivalent to a rate process which is usually

referred as branching.

In order to simulate this drifted diffusion process through a stochastic evolution of the

particle configurations, the standard fixed node DMC algorithm relies upon writing the

time evolution of Eq. 2.51 in its integral form as:

f(Rel, t) =
∫

dR′
el G(Rel ← R′

el, t) f(R′
el, 0) (2.52)

where the propagator G(Rel ← R′
el, t) is the Green’s function solution of Eq. 2.51 with

the initial condition: G(Rel,R′
el, 0) = δ(Rel,R′

el). G(Rel,R′
el, t) is approximated with a

product of short-time expression using the well-known Trotter-Suzuki decomposition [44,

45] of the time evolution exponential operator e−τĤ . This procedure introduces a further

approximation since it is exact only when the time step τ used in the Trotter-Suzuki

formula goes to zero: τ → 0. The time step error is generally small compared to the FN

error and can be cured by extrapolation procedures.
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In practical implementations of FN-DMC, a population of “walkers”, each representing

a different trajectory Ri
el in the configurational space, is generated with a weight wi such

that
∑

i wi = 1. The system is initially thermalized by performing a small amount of

VMC steps realized by setting f(Rel, 0) → Ψ2
T (Rel) and all weights to 1. The diffusion

process given by Eq. 2.51 is simulated by letting the walkers diffuse with random moves

in the configurational space (generally drawn from a Gaussian distribution with spread τ)

and applying a drift τvD to the trajectory. After a certain number of new configurations

in the drift-diffusion process, the branching term is applied and a certain amount of

configurations are killed or replicated by an appropriate update of the weights. The

energy shift Λ(t) is modified in order to maintain a stable walker population and to keep

the global random walk in the regions where the sampling distribution is larger.

For a more detailed description of the DMC algorithm and its variances we refer the

interested reader to the reviews in Refs. [46] and [47].

Estimators in DMC

In the DMC method the evaluation of observables Ô is more delicate with respect to

VMC. In the latter approach, the estimator OVMC defined in Eq. 2.44 approximates to

the true or “pure” average O0 = 〈Ψ0|Ô|Ψ0〉
〈Ψ0| Ψ0〉

. The quality of this approximation depends on

the trial wavefunction ΨT . On the contrary, FN-DMC samples a different distribution,

thus a direct application of Eq. 2.44 yields the mixed estimator:

Omix =
1
M

M∑

i=1

ÔL(Ri
el), (2.53)

where {Ri
el} are configurations drawn from the mixed distribution f(Rel). It can be shown

that Omix coincides with O0 if and only if the operator Ô commutes with the Hamiltonian.

This directly follows from the definition of the Hamiltonian expectation value given in

Eq. 2.47.

In other cases, it is possible to build an extrapolated estimator by noting that the true

estimator is approximated by:

O0 = Omix + 〈Ô〉δΨ, (2.54)

where the second average in the right-hand-side of the above Equation is evaluated over

δΨ. The latter quantity is the linear difference between the trial wavefunction and the

true ground state and it is defined as follows:

Ψ0(Rel) = ΨT (Rel) + δΨ +O(δΨ2). (2.55)
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Using Eq. 2.55 and taking the expectation value of Ô with respect to ΨT (namely OVMC)

we get the following relation:

Omix = OVMC + 〈Ô〉δΨ =⇒ 〈Ô〉δΨ = Omix − OVMC. (2.56)

From Eqs. 2.54 and 2.56 we notice that the linear variation can be cancelled out by

choosing the following extrapolated estimator for O0:

O0 ≃ 2Omix − OVMC +O(δΨ2). (2.57)

The applicability of Eq. 2.57 is obviously limited by the quality of the trial wavefunction

ΨT , thus the initial VMC ansatz must be well optimized in order for this method to give

accurate results. In this thesis we use the mixed estimators formalism for computing

correlation functions presented in Chap. 6. Alternative schemes for accessing the pure

estimate O0 have been devised. Among them, one of the most successful is the forward

walking technique [48] which evolves the DMC weights through imaginary time such that,

after the projection, one gets: f(Rel, t)→ Ψ0. Forward walking must be applied as post-

processing tool after a DMC simulation and it has approximately the same cost of the

initial simulation; on the contrary, the reptation Monte Carlo method [49], a modification

of the standard DMC algorithm to work with imaginary time dependent variables, allows

to directly access the pure estimators during the QMC run.

2.4.3 Pseudopotentials and lattice regularized DMC

Energy consistent pseudopotentials

One of the main bottlenecks of the DMC algorithm is the bad scaling with the atomic

number Z. This has been proven to be of the order of ∼ Z5.5−6.5 by simulating noble gases

with large atomic number within DMC [50, 51]. This fact would limit the applicability

of QMC methods to the study of light elements and small extended systems.

In order to overcome this issue, the core electrons need to be replaced with cheap,

but accurate pseudopotentials. In this work we use pseudopotential functions specifically

designed for QMC, developed by Burzatki, Filippi and Dolg (BFD) in Refs. [52, 53]. BFD

pseudopotentials are freely available for many elements in Ref. [23].

The idea of a pseudopotential is to substitute the electronic part of the many-body

Hamiltonian with an appropriately defined operator restricted only to Nv < N valence

electrons. This operator can be written as:

Ĥv = −1
2

Nv∑

i=1

∆i +
Nv∑

i<j

1
|ri − rj|

+
Nat∑

a=1

Nv∑

i=1

Vapp(ri). (2.58)
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In Eq. 2.58 the term Vapp(ri) is a semi-local and angular momentum dependent operator.

Its main role is to reproduce the core-valence repulsion and the orthogonality among core

and valence electronic states. The functional form of Vapp(ri) could have nodes and it must

possess the correct asymptotic limit for electron-nucleus separations r = |r − R| → 0.

The Vapp(i) used in this work is parameterized as a sum of localized Gaussians functions

multiplied by powers of the electron-ion distance. Defining Nl the number of Gaussians

per angular momentum channel l, the pseudopotential operator is constructed as:

V̂pp(r) = −Zv
r

+
Nloc∑

k=1

Aklocexp(−aklocr
2)

r2−nk
loc

︸ ︷︷ ︸

local part: VL

+
lmax∑

l=0

Nl∑

k=0

Akl exp(−akl r2)P̂l
r2−nk

l

︸ ︷︷ ︸

non-local part: VNL

. (2.59)

where A, a,N, n are adjustable parameters. In the previous expression, Zv < Z is the

charge of the pseudized nucleus. P̂l denotes a standard projector operator on the spherical

harmonics of angular momentum l:

P̂l =
l∑

m=−l

|ml〉 〈ml| .

The maximum angular momentum lmax in the projection is typically chosen equal to the

highest angular momentum occupied in the ground state atomic state. However, it has

been recently argued [54] that higher angular momentum components can be beneficial

for the final accuracy of the QMC calculation. The non-local angular integration required

by the projector is performed numerically on a randomized mesh of points distributed

according a given quadrature [55]. The local and non-local parameters involved in the

pseudopotential definition in Eq. 2.59, namely A,a,N ,n both local and non-local, are de-

termined by fitting a number of all electron, scalar relativistic Hartree-Fock calculations

performed at different electronic states of the considered atom (energy consistent scheme).

Unless otherwise specified, BFD pseudopotential are employed for all QMC results pre-

sented in this work as well as for preparatory DFT calculations. When computationally

feasible, such as in the case of the single water molecule and the protonated water dimer

(see Sec. 3.3), we estimated the pseudopotential error by comparing selected pseudopo-

tential energies with corresponding all-electron calculations.

Lattice regularization

The inclusion of non-local pseudopotentials into Ĥ brings serious issues to the FN approx-

imation, since the non-local term cannot be constrained within nodal pockets. In fact,

in Eq. 2.51, the pseudopotential operator applied to the mixed distribution f(Rel, t) can
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lead to a non-local branching, thus evolving the diffusion process outside the nodal pock-

ets. This issue can be circumvented by neglecting the non-local terms in the imaginary

time equation with the locality approximation [56]. However, this procedure sacrifices the

variational character of the DMC algorithm, since the local Hamiltonian ground state can

be lower in energy than the true ground state of the system.

The lattice regularized DMC (LRDMC) technique [5, 57] offers an alternative solution

which keeps the variational character of the standard DMC algorithm. Instead of relying

on the Trotter breakup for building the short-time approximation, LRDMC takes a dif-

ferent path based on a discretization of the many-body Hamiltonian Ĥ. The non-local

kinetic energy operator is discretized on a grid with lattice space a. At each update of

the electronic position during the diffusion process, the direction of the lattice is chosen

with random angles θ and φ drawn from a normal distribution. The randomization of

the direction allows to explore the continuous space thus ensuring ergodicity with nearest

neighbors lattice moves only. The full non-local part of the Hamiltonian now reads:

T̂ a = −1
2

N∑

i=1

∆a
ri

(θi, φi) + V̂NL +O(a2), (2.60)

where ∆a
ri

(θi, φi) is the discretized Laplacian and we have included also the non-local

pseudopotential operator previously defined.

A better accuracy can be achieved by discretizing also the local part of the pseudopoten-

tial – the electron-ion Coulomb interaction – by requiring the continuous and discretized

version of the local energy to be the same: eaL(Rel) = eL(Rel). This turns out in the

following regularization for the local potential:

V a
L (Rel) = VL(r)− (∆r −∆a

r)ΨT (Rel)
2ΨT (Rel)

, (2.61)

where VL has been defined in Eq. 2.59. Notice that the locality character of the one-body

potential is lost and its discretized version is a purely many-body quantity since it depends

on all electron positions. Finally, the full discretized Hamiltonian reads:

Ĥa = T̂ a + V̂ a
L + V̂ee +O(a2) (2.62)

where only electron-electron interaction V̂ee is not discretized. Despite being defined on

a continuous space, Eq. 2.62 is effectively equivalent to a lattice Hamiltonian. Therefore,

the number of Ĥ matrix elements connecting two electron positions are a finite number.

This is valid also in the presence of non-local pseudpotentials, which do not constitute a

problem within this scheme.

Within LRDMC the time step error is substituted by the lattice space error; the two

quantities are linked by the relation: a =
√
τ . Benchmark calculations for the LRDMC
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energy extrapolation to zero lattice space are presented Fig. 6.6 for the case of iron selenide

(FeSe). The mixed average is evaluated using the discretized Hamiltonian:

ELRDMC =
〈ΨG| Ĥa |ΨT 〉
〈ΨG| ΨT 〉

, (2.63)

which converges to Eq. 2.49 when a → 0. The imaginary time evolution exploited for

evaluating Eq. 2.63 is carried out with the fixed node DMC algorithm suitably modified

to work on a lattice [58] by operating the substitution: e−[Ĥ−Λ] → Λ− Ĥ .

2.5 Efficient wavefunction optimization

The flexibility of the QMC ansatz is extremely important in order to accurately include

different physical ingredients depending on the system under consideration without chang-

ing the functional form. Flexibility can only be achieved by parameterizing the variational

wavefunction with a sufficiently large set of tunable parameters (∼ 103 − 104). As we al-

ready mentioned, the degree of optimization of the whole set crucially affects the statistical

efficiency of the VMC and, to a lesser extent, DMC algorithms.

The optimization of a function depending on a large set {α} of independent variables is

an important branch of mathematical analysis and it is typically carried out by minimizing

some cost function with respect to the parameters. The main choices for this cost function

for QMC are:

• the variational energy E = 〈eL〉 introduced in Eq. 2.42 [59, 60, 61, 62, 63].

• the variance of the variational energy defined as σ2 = 〈(eL − 〈eL〉)2〉 and generally

minimized through a correlated sampling approach [64, 65, 66].

• more rarely, some combination of the two, for instance σ2

E2
VMC

[67] or a linear combi-

nation of the two with arbitrary coefficients [68]: c1E + c2σ
2.

Independently from this choice, the standard optimization methods, e.g. Newton method

or linear method, must be modified to cope with the additional complication arising from

the statistical noise affecting the evaluation of the cost function.

In this Section we present an energy minimization scheme based on the efficient stochas-

tic reconfiguration (SR) technique. SR is able to optimize up to 104 variational param-

eters at the same time with a stable and robust procedure. Like VMC and DMC, SR is

a variational method based on a MC approach for computing integrals. SR is used for

all the results presented in this thesis as the optimization method of both Jastrow and

determinantal parts of our ansatz.
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2.5.1 Stochastic reconfiguration method

The stochastic reconfiguration method is an energy minimization technique for a generic

trial wavefunction. Originally devised for lattice calculations [62], it has been successfully

generalized and improved to work in the continuum [35, 63, 69] on realistic ab initio

systems. SR is based upon the fact that the repeated application of the projector operator

Λ− Ĥ – with Λ sufficiently large – to the ansatz ΨT allows to filter out the exact ground

state of Ĥ in a variational fashion. This approach is similar to the imaginary time

evolution used in the LRDMC method (see Subsec. 2.4.2). The following derivation

is carried out for a real wavefunction, the generalization to complex arithmetic is simple

and is briefly outlined in Chap. 4.

In the following, we consider a generic trial wavefunction |ΨT (α0)〉 which is parame-

terized with an initial set of p + 1 variational parameters: α
0 = {α0

0, . . . , α
0
p}. These

parameters can be non-linear, which is the case of the Gaussian exponents and of the

Jastrow parameters. Within a JAGP calculation, the full set of optimizable parameters

includes the Jastrow coefficients Ca,b
µ,ν , S

a,b
µ,ν and homogeneous terms β, γ, the geminal ma-

trix λa,bµ,ν (or the MOs coefficients λMO
k depending on the representation), the exponents ζi

of the Gaussian orbitals in both determinant and Jastrow basis sets and also, within the

Born-Oppenheimer approximation, the ionic positions R.

Given a small collective variation of the parameters such that α = α
0 + δα, we can

write the Taylor expansion of the updated wavefunction Ψ′
T (α) in the following way:

Ψ′
T (α) = ΨT (α0) +

p
∑

k=1

∂ΨT (α0)
∂α0

k

δαk +O(δα2). (2.64)

A simple transformation allows to rewrite Eq. 2.64 as:

Ψ′
T (α) = ΨT (α0) +

p
∑

k=1

ΨT (α0)
∂ ln [ΨT (α0)]

∂α0
k

δαk

=
p
∑

k=0

δαk ÔkΨT (α0), (2.65)

where we retain only the linear terms of the expansion.

The local operators {Ôk} are defined as the derivatives of the logarithm of the wave-

function with respect to each variational parameter and we conventionally define Ô0 = I

and δα0 = 1. In the case of δα0 6= 1, it is sufficient to rescale the other parameters as:

δαk →
δαk
δα0

, (2.66)

for obtaining the sum in Eq. 2.65. Notice that the set of {Ôk} spans a (p+1)-dimensional

subspace of the whole Hilbert space defined by the wavefunction ΨT . The dimension of
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the subspace is determined by the size of the wavefunction basis set. It is evident that

the linear approximation in Eq. 2.65 becomes more accurate as the true ground state is

approached, since the variations in the parameters tends to zero.

The SR method consists in an iterative application of the projector Λ − Ĥ to the

restricted subspace spanned by the {Ôk} operators which has the dimension of the basis

set. One step of the SR procedure consists in solving the following Equation for each

variational parameter [62]:

〈ΨT | Ôk(ΛI− Ĥ) |ΨT 〉 = 〈ΨT | Ôk |Ψ′
T 〉 with k = 0, . . . , p. (2.67)

Substituting the linear expansion defined in Eq. 2.65 into Eq. 2.67, one obtains a system

of equations for the set of variations {δαk}:







Λ− 〈Ĥ〉 = δα0 +
∑p
l=1〈Ôl〉δαl for k = 0

Λ〈Ôk〉 − 〈ÔkĤ〉 = δα0〈Ôk〉+
∑p
l=1 δαl〈ÔkÔl〉 for k = 1,. . . ,p,

where the expectation values 〈·〉 are evaluated over the initial trial state |ΨT (α0)〉. The

above conditions can be cast into a more compact and computationally convenient matrix

form:
1
2
fk = 〈ΨT | Ôk

p
∑

l=0

δαlÔl |ΨT 〉 =
p
∑

l=0

δαlSkl, (2.68)

where fk = 2
(

〈Ôk〉〈Ĥ〉 − 〈ÔkĤ〉
)

is the known term and Skl = 〈ΨT | ÔkÔl |ΨT 〉 is a

positive definite covariance matrix. The elements of both these matrices are evaluated

with a standard Monte Carlo integration based on the Metropolis algorithm as VMC

(see Sec. 2.4). The solution of Eq. 2.68 gives the variation of the wavefunction parameters

along a direction selected by the projector Λ−Ĥ and it is found by inverting the covariance

matrix:

δα =
1
2
S−1 f . (2.69)

The new wavefunction ΨT (α) after one SR step can be found by updating the parameters

as:

α = α
0 + ∆δα = α

0 + ∆
1
2
S−1 f , (2.70)

where ∆ is an appropriately small value related to the δα normalization (Eq. 2.66);

therefore ∆ ∝ 1/Λ and it is adjustable during the simulation for achieving a better

convergence rate of the iterative scheme.
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In fact, we show in the following that the energy gain at each SR iteration depends on

the ∆ chosen. This can be understood by noting that the derivative of the Hamiltonian

expectation value with respect to a generic variational parameter can be written as:

−∂〈Ĥ〉
∂αk

= −
〈
∂ΨT

∂αk

∣
∣
∣ Ĥ |ΨT 〉+ 〈ΨT | Ĥ

∣
∣
∣
∂ΨT

∂αk

〉

〈ΨT | ΨT 〉
+ 2
〈ΨT | Ĥ |ΨT 〉

〈
∂ΨT

∂αk

∣
∣
∣ ΨT

〉

〈ΨT | ΨT 〉2

= 2
(

〈Ôk〉〈Ĥ〉 − 〈ÔkĤ〉
)

= fk (2.71)

where the second equality derives from the relation ∂ΨT

∂αk
= ΨT Ôk and the hermiticity of

the Hamiltonian. We also assume that Ĥ is independent on the variational parameter

αk. This is not the case if one considers the ionic positions as variational parameters for

structural relaxation, as we will see later on in this Section.

Eq. 2.71 allows to interpret f as a generalized force with respect to the variational

parameters α. By considering a sufficiently small ∆, the energy expectation value at one

SR iteration can be expanded around the parameter variation. By retaining only the

linear term, one obtains the energy gain at each SR step:

−fT (α−α
0) = −1

2
∆ fTS−1 f , (2.72)

which is always negative since the S matrix is always positive definite. As already men-

tioned, the ∆ parameter controls the speed of convergence and the overall efficiency of

the method. It must be an appropriate tradeoff between large values – breaking the ap-

proximation Eq. 2.72 and leading to unstable simulations – and too small values, leading

to a very low convergence rate and thus long simulations [70].

2.5.2 Stochastic reconfiguration with ionic forces

Thanks to the Born-Oppenheimer approximation, the SR can be readily applied to struc-

tural minimization by considering the atomic positions {R} as additional variational

parameters of the many-body wavefunction. At the VMC level, the force acting on an

atom at position R can be written as a gradient of the local energy as follows:

fR = −∇R〈Ĥ〉 = −∇R〈eL〉 (2.73)

where eL = ĤΨT/ΨT is, as usual, the local energy. In the definition of eL both Ĥ and ΨT

explicitly depend on the atomic positions. An implicit dependence in the wavefunction

is also present through the electronic variational parameters: αl = αl(R). However, it is

easy to show that the gradient ∂〈Ĥ〉
∂αl

∂αl

∂R
(obtained after applying the chain rule) vanishes

when approaching the energy minimum for all variational parameters [71].
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In VMC calculations, the well-known Hellmann-Feynman theorem is not directly ap-

plicable due to the approximate nature of the trial wavefunction. Therefore it is more

convenient and efficient [72] to rely on the analytic expression of the gradient in Eq. 2.73.

This quantity reads:

fR = −
∫

dRel
∂eL

∂R
Ψ2
T

∫

dRelΨ2
T

− 2
∫

dRel(eL − 〈Ĥ〉)∂ ln |ΨT |
∂R

Ψ2
T

∫

dRelΨ2
T

, (2.74)

where the first term is an Hellmann-Feynman like expression, whereas the second term is

usually referred as Pulay term and it vanishes when reaching the exact ground state.

The efficiency in the evaluation of Eq. 2.74 can be improved of ∼ 1 order of magnitude

by employing the differential space warp coordinate transformations (SWCTs) [66, 71, 72].

A SWCT is a differential coordinate transformation which is designed to mimic the

displacement of an electron at position ri when a chosen nucleus located at Ra is displaced

of a vector Da from its original position. In particular, if the electron is very far from

the chosen atom, it does not feel the movement of the ion and hence it remains at the

same position; on the other hand, if the electron is very close to the atom, due to the

Born-Oppenheimer approximation it will approximately moves of the same amount ∼ Da.

This intuitive picture is achieved mathematically with the following transformation:






Rb → R′
b = Rb + Da for b ∈ [1, Nat]

ri → r′
i = ri + ω(|ri −Ra|)Da for i ∈ [1, N ]

(2.75)

where

ω(|ri −Ra|) =
|ri −Ra|−4

∑Nat
a=1 |ri −Ra|−4

is a weight function which adjusts the displacements according to the aforementioned

reasoning. As detailed in Ref. [71], the analytical forces can be simply rewritten after the

application of the above transformation. Alternative estimators for ionic forces have been

devised [73, 74] which do not rely on the analytical expression in Eq. 2.74.

Eq. 2.74 combined with SWCT ensures, in principle, a very efficient evaluation of

the forces fR. However, the main bottleneck in this computation is represented by the

derivatives of the local energy ∂eL

∂R
and of the variational wavefunction ∂ ln |ΨT |

∂R
appearing in

Eq. 2.74. It is well-known [72] that the straightforward finite difference implementation

is inefficient and affected by a larger statistical error with respect to the local energy

computation. This fact often leads to unfeasible calculations especially for large systems.

There have been a few attempts to overcome this issue such as, for instance, the one based

on the correlated sampling technique for an accurate evaluation of energy differences [75].

In this work we rely on an alternative solution which is the subject of the next Section.
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2.5.3 An alternative route to derivatives: adjoint algorithmic

differentiation

It is evident that an efficient implementation of the SR method requires a fast computa-

tion of wavefunction derivatives with respect to a large set of variational parameters. As

we previously mentioned, this is particularly important for evaluating ionic forces. Within

our approach, this is achieved with the adjoint or automatic algorithmic differentiation

(AAD), presented in this Section. AAD refers to a programming technique whose purpose

is to calculate derivatives of an arbitrary complex function F implemented as a computer

program. AAD is based on the idea that a program is always composed by a sequence of

basic arithmetic operations (such as addition and multiplication) and intrinsic functions

(such as exp, log, etc. etc.) which, individually, are elementary differentiable. It is there-

fore possible to compute the derivative of the output(s) with respect to the input(s) of

the function by a mechanical and almost black-box application of the basic rules of differ-

entiation. The resulting derivatives are therefore analytical with neither approximation

nor truncation errors. Furthermore, the computational of AAD cost is proportional, with

a small prefactor, to the cost of the initial program. Hence, it is sufficient to devise an

efficient algorithm to compute the function F in order to obtain, with the same efficiency,

all its derivatives with respect to the input(s).

For this reason, AAD is a very attractive approach in situations where there is no

obvious or computationally efficient algorithm to compute the derivatives of a certain

quantity which, on the contrary, can be evaluated fast. This is the case, for example, of

the determination of derivative assets as well as portfolio risks in computational finance,

for which AAD has been applied the first time outside computer science research [76, 77].

Within QMC, this approach has been introduced in Ref. [72] for an efficient computation

of many-body ionic forces. In this thesis, this approach has been extended to all the

derivatives of the many-body wavefunction ΨT with respect to the variational parameters

needed by the SR optimization method.

Following Ref. [72], we consider a computer implemented function which, from a large

number MI of inputs collectively denoted as the vector X = (X1, . . . , XMI
) ∈ R

MI , allows

to evaluate a smaller number MO of outputs referred as the vector Y = (Y1, . . . , YMO
) ∈

R
MO (MI ≫MO) in two steps:

Y = F (X) with X → U → V → Y. (2.76)

In the implementation within QMC, the outputs are the local energy and the many-body

wavefunction (MO = 2), whereas the inputs are represented by all the electron coordinates

and variational parameters (MI up to ∼ 104). The two intermediate steps U and V can

be composed, in the simplest case, by a single code instruction or by an entire high-level
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subroutine. In the illustrative case of Eq. 2.76, the derivative of the output with respect

to the input is the result of the following application of the chain rule:

∂Y

∂X
=
∂Y

∂V

∂V

∂U

∂U

∂X
. (2.77)

If one focuses on an individual step, such as V → Y , its corresponding contribution to

the chain rule in Eq.2.77 is defined as the derivatives of an arbitrary linear combination

of the output vector {Yi} with respect to the input as follows:

V̄k =
MO∑

j=1

Ȳk
∂Yj
∂Vk

. (2.78)

The quantity V̄k is called the adjoint of the input variable V referred to the instance

V → Y of the function F . Ȳ is a given vector in R
MI defining the arbitrary linear

combination, as we shall see in greater detail later on. By using the above definition of

adjoint for each step, the chain rule in Eq. 2.77 can be rewritten as follows:

Ȳ
∂Y

∂X
= V̄

∂V

∂U

∂U

∂X
= Ū

∂U

∂X
= X̄ (2.79)

The final result X̄ is the adjoint of the input and it represents a linear combination of the

rows of the Jacobian Jjk = ∂Fj(X)

∂Xk
of the function F , defined as:

X̄k =
MO∑

j=1

Ȳk
∂Yj
∂Xk

=
MO∑

j=1

ȲjJjk with k = 1, . . . ,MI . (2.80)

The weights of each component of the Jacobian are therefore given by the vector Ȳ , which

is set at the beginning of the AAD procedure. For example, if one wants to calculate the

derivative with respect to the first component only of the input X, the Ȳ vector can be

set to (1, 0, . . . , 0).

From Eq. 2.79 it is easy to realize that, once all adjoints are defined, the derivatives of

the function F (Eq. 2.80) can be computed by simply following the original algorithm in

the reversed sequential order as follows:

Ȳ → V̄ → Ū → X̄. (2.81)

Hence, the AAD procedure consists in rewriting the initial or direct program from its

last instruction towards the beginning by propagating the adjoints of each step, i.e. by

differentiating each instruction following the chain rule sketched in Eq. 2.77. The final

result of the AAD is a new program F̄ which implements the reverse of the original

algorithm: each time the original program holds a variable v, the reverse holds a variable
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Table 2.1 – Example of AAD implementation in Fortran90. Direct and reverse algorithms for computing
the distance between two generic real arrays and its derivatives (see text for definition). The adjoints
of each variable are denoted by the _b signature. The outcome of the procedure is represented by
the vectors A_b and B_b containing the derivatives of the distance e with respect to each component
of the input vectors A and B. The function PUSH (POP) are used to store in (retrieve from) memory
buffers appropriately defined the intermediate variables of the direct program needed by the reverse
algorithm. For the sake of simplicity, in this explanatory program the arbitrary vector Ȳ possesses only
one component which is obviously set to 1.

Direct program Reverse program

e2 = 0 .0

A( 1 :N) = 0 .0

B( 1 :N) = 0 .0

do i = 1 ,N

e1 = A( i ) − B( i )

ca l l PUSH( e1 )

e2 = e2 + e1 ∗∗2
ca l l PUSH( e2 )

end do

e = sqrt ( e2 )

A_b( 1 :N) = 0 .0

B_b( 1 :N) = 0 .0

e_b = 0.0

e1_b = 0.0

e2_b = 0.0

e2_b = e2_b + 0.5/ sqrt ( e2 ) ∗e_b

e_b = 0.0

do i = N,1 ,−1

ca l l POP( e1 )

e1_b = e1_b + 2∗ e1∗e2_b

ca l l POP( e2 )

A_b( i ) = A_b( i ) + e1_b

B_b( i ) = B_b( i ) − e1_b

e1_b = 0.0

end do

e2_b = 0.0

v̄ with the same shape, containing the derivative of v with respect to an arbitrary linear

combination of the inputs.

A real program devised with the sequential programming logic is made of numerous

steps of the kind in Eq. 2.76. Furthermore, these steps typically possess a tree-like con-

nectivity, in the sense that the output of each step constitutes not only the input for the

step following directly, but also for other parts of the program, therefore contributing to

different adjoints in the reverse algorithm. It is thus possible to increase the efficiency of

AAD by storing in memory, by appropriately defined buffers, the intermediate outputs of

the original program (Store-All approach, see Tab. 2.1 for a simple example) before start-
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ing the reverse, instead of recomputing them within the reverse program (Recompute-All

approach). In the TurboRVB implementation it is always used the more efficient, but

harder to code, Store-All approach.

The cost of AAD (Eq. 2.80) satisfies the following inequality [76]:

Cost [F ′ + F ]
Cost [F ]

≤ ωMO (2.82)

where F ′ = ∇F refers to Jacobian and F to the function itself, whereas ω ∈ [3, 4] is a small

prefactor multiplying the small number MO of dependent variables. Furthermore, the cost

of AAD is also linear in the number of the components of F ′ needed in output. In order to

obtain all the Jacobian components is indeed sufficient to repeat MI times the procedure

by setting the Ȳ arbitrary vector as (1, 0, 0, . . . , 0) / (0, 1, 0, . . . , 0) / (0, 0, 1, . . . , 0) and so

on.

The practical implementation of the reverse algorithm is mechanical in nature and

therefore it can be performed itself by a program. For this purpose several tools have been

developed. In the TurboRVB code, a few reversed routines among the most complicated

ones have been created by the software Tapenade [78], while the remaining ones have

been coded by hand. Notice that AAD can be simply extended to complex variables

needed for treating periodic solids within QMC (see Chap. 4). We present the adjoint

version of two of the most important operations among complex vectors in Appendix C.

An exhaustive description of the programming rules needed to implement AAD is be-

yond the scope of this section and the interested reader can refer to the original paper in

Ref. [72]. Nevertheless, it is useful in conclusion to report an example of practical imple-

mentation of AAD. In Tab. 2.1 we show the direct and reverse algorithms of a function

calculating the distance between two real vectors A and B of dimension N defined as:

e =
√
∑N
i=1(Ai − Bi)2. Despite its simplicity, this sample code presents all the main steps

needed to differentiate an algorithm via AAD in the Store-All approach.

2.6 Conclusions

In this Chapter we presented a comprehensive theoretical framework based on quantum

Monte Carlo techniques for studying the electronic structure of molecular, open shell

systems.

We use the accurate AGP wavefunction built as an antisymmetric product of geminal

or electron pairing functions as the determinantal part of our ansatz. Thanks to a DFT

package built-in to the QMC software TurboRVB we are able to use the same setup (basis

set and pseudopotential) for DFT and QMC calculations without relying on any parser
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tool. A flexible representation of the AGP wavefunction based on a molecular orbital ex-

pansion allows us to go from the independent particle DFT wavefunction to the correlated

AGP by keeping the same computational cost (∼ N3 −N4 with, however, a much larger

prefactor with respect to the DFT calculations). The combination of the Jastrow factor

with the pairing function yields the ab initio realization of the resonating valence bond

theory developed by Pauling and Anderson. The JAGP wavefunction recovers most part

of both dynamic and static electron correlation and allows a fine control on the strength

of chemical bonds among different atomic orbitals.

The wavefunction optimization is crucial to obtain a good QMC variational energy.

For this purpose, we have introduced the well-known stochastic reconfiguration energy

minimization technique. At variance with previous implementations of this method, in

our work we utilize a novel and efficient approach for computing wavefunction derivatives

based on adjoint algorithmic differentiation. Besides its efficiency, AAD also allows a fast

implementation of new functional forms of the wavefunction ansatz, such as for example

the Pfaffian function [39], whose usefulness will be pointed out in the last Chapter of

this thesis. In fact, it is only necessary to devise an efficient algorithm to evaluate the

wavefunction and the local energy, then its derivatives are automatically obtained with

low coding effort and with the same computational complexity as the direct algorithm.



Chapter 3

Applications to aqueous systems:

proton transfer reactions

3.1 Introduction

In this Chapter we present extensive applications of the QMC framework previously de-

veloped to an open problem in quantum chemistry: the phenomenon of proton transfer

(PT) reactions in aqueous systems. Our investigation involves also a thorough study of

the water molecule, as a fundamental preliminary assessment for the study of PT systems.

Proton transfer is a ubiquitous phenomenon occurring along hydrogen bond networks

which develops on energy scales lower than the chemical accuracy of 1 Kcal/mol. Its

accurate ab initio description requires therefore advanced computational methods such as

coupled cluster techniques or QMC. On the other hand, in order to extract quantitative

properties of PT physics, such as the activation barrier of the reaction or the proton

diffusion coefficient, large scale simulations are needed. We will show in this Chapter

that the favorable scaling of our QMC framework combined with an efficient method for

reducing the number of variational parameters introduced here, allows us to cope with

both of these requirements.

Previous ab initio molecular dynamics studies have been mainly carried out using poten-

tial energy surfaces (PESs) obtained from density functional theory calculations [79, 80]

due to its very cheap computational cost. However, DFT-based PESs fail to reproduce

basic properties of liquid water such as the melting temperature [81] and the oxygen-

oxygen radial distribution function gOO [82]. Recent ab initio molecular dynamics on

liquid water [7, 70] based on QMC forces have improved this scenario and they will likely

shed new light on H2O properties when next generation supercomputers will enable longer

and more accurate simulations.

46
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The DFT failure on liquid water affects also the DFT description of PT reactions.

This process, whose microscopic mechanism is known as the Grotthuss mechanism [83], is

extremely important in a wide range of biological systems and influences many dynamical

processes in material science, biochemistry [84] and bioenergetics [85, 86]. It also plays a

fundamental role in fuel cell development and fabrication.

The theoretical predictions based on DFT simulations [87, 88] are not in accordance

with experiments [89, 90] even for a basic descriptor of the reaction such as the PT

activation barrier. Nevertheless, these simulations have already given many insights into

the physics of Grotthuss mechanism [91, 92, 93]. In particular, it has been found that

proton transport in water is abnormally fast and is not driven by any ordinary diffusion

process. The picture which is instead commonly accepted describes the translocation of

excess positive charge as a structural diffusion of defects, involving both structural and

dynamical rearrangements of the hydrogen-bonded network [93].

As already mentioned, one of the main issues preventing from a complete understanding

of PT in water, is related to its very sensitive thermal behavior. The required PES

precision is of the order of few tenths of Kcal/mol, down to the so-called subchemical

accuracy, which has been reached only recently by computational methods beyond DFT,

such as coupled cluster (CC), multi-reference configuration interaction (MRCI) and the

full configuration interaction quantum Monte Carlo (FCIQMC) methods. However, CC

scales as N5 − N7 with the number of particles, whereas MRCI and FCIQMC show a

weak exponential scaling; this makes large scale realistic molecular dynamics simulations

unfeasible with these methods.

Therefore, highly correlated investigations mainly focused, so far, on the two most

important structural models devised to explain proton hydration. M. Eigen [94] considered

as the core of PT the complex H9O
+
4 in which a hydronium H3O

+ is strongly bound to

three water molecules; G. Zundel [95] proposed a different reaction which involves the

simpler H5O
+
2 complex (the “Zundel ion” or protonated water dimer) as the core of the

transfer of a proton between two H2O molecules. These two models occur only as limiting

case of a more complex phenomenon [91, 93]; nevertheless, they represent a perfect testing

ground for correlated computational methods.

In particular, the protonated water dimer H5O
+
2 is the smallest system in which an

excess proton is shared between water molecules; due to its simplicity, many studies have

been carried out to elucidate its structure [96], energetics [97, 96] and vibrational prop-

erties [98]. Also, molecular dynamics simulations including quantum effects via Feynman

path integrals have been performed [99]. Last but not least, an accurate PES has been

recently produced [100] by fitting a large set of coupled cluster calculations including

single, double and perturbative triple excitations (CCSD(T) method).
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3.1.1 Organization of the Chapter

The aim of this Chapter is to set the stage for realistic PT calculations based on our

QMC approach. In order to reach this goal, we focus our efforts on two tightly coupled

directions.

On one hand, we address a major issue of QMC simulations: the rapid growth (∼
N2

bas) of the computational burden with the size of the primitive basis set. This issue

could impose severe limitations on the large-scale simulations of PT systems needed to

extract physical observables comparable with experiments (such as the proton transfer

reaction barriers and diffusion coefficients), but also to take into account solvation effects

with a sufficiently large number of H2O molecules. We develop a technique based on

a novel kind of contracted orbitals which we dub geminal embedded orbitals (GEOs).

GEOs are contracted hybrid orbitals designed to possess optimal overlap with the initial

uncontracted basis set. In the context of PT, they are first constructed for the H2O

molecule alone and then directly transferred to the more complex Zundel model. The

theoretical foundations of the GEOs method are presented in Secs. 3.2.1 and 5.5.1 and

the method is compared to standard natural orbitals in Sec. 3.2.3. We work out the

optimal contracted basis for the water monomer in Sec. 3.2.4.

On the other hand, we present in this Chapter an extensive analysis of structural

properties of the H5O
+
2 complex in order to assess the accuracy of our QMC framework

for more complex PT systems. In particular, we address in Sec. 3.3.1 the ground state

geometrical structure of the Zundel ion as modeled by QMC. In Sec. 3.3.2 we work out

its energy landscape along the oxygen-oxygen distance, the natural coordinate of the PT

reaction. The transition between the symmetric configuration – where the proton is evenly

shared among the two oxygens – and the asymmetric regime – where the excess proton

is more bound to one H2O molecule – is critical to understand the PT mechanism. In

Secs. 3.3.3, 3.3.4 we demonstrate that QMC can describe this crossover with an agreement

down to subchemical accuracy (∼ 0.2 Kcal/mol) with the quantum chemistry “golden

standard” CCSD(T) method [100], and we discuss the connections of our results with

realistic finite temperature simulations. Finally in Sec. 3.3.5 we test the ability of our

approach to tackle much larger protonated water clusters in an affordable computational

time. This is achieved by performing test calculations on a simulation model containing

6 water molecules and an excess proton. We draw the conclusions to this Chapter in

Sec. 3.4
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3.2 Geminal embedded orbitals

In this Section we present a procedure to reduce the primitive basis set size of the QMC

ansatz (Eq. 2.28) in an effective and optimal way. This is achieved by defining contracted

hybrid orbitals, dubbed geminal embedded orbitals (GEOs), by means of an original

density matrix embedding procedure published in Ref. [101]. We apply this procedure

to the H2O molecule and devise an optimal contracted basis set, transferable to more

complex water clusters such as the protonated water dimer presented in Sec. 3.3.

Reducing the number of localized orbitals over which the wavefunction is expanded

has several advantages and it is crucial for tackling large molecular clusters or sizable

supercell calculations with QMC. At first it obviously decreases the computational effort

for the wavefunction evaluation. Furthermore, it also guarantees a more robust energy

minimization procedure (see Sec. 2.5). Indeed, given the fact that QMC energy derivatives

are noisy, using a more compact basis set reduces redundancy and helps find more quickly

the global minimum since the number of the effective directions in the Hilbert space is

smaller.

3.2.1 Embedding scheme

The scheme presented in this section is based on a density matrix embedding of the

determinantal part of the wavefunction. The Jastrow factor is not considered in the

following discussion since its convergence with basis set is much quicker and therefore it

generally requires few basis functions. This method is an application of the concept of

quantum entanglement between a part of a system (A) interacting with the environment

(B), where one represents A (B) with a set of MA (MB) orthogonal states labeled by the

index i (j) and writes down the wavefunction of the universe U = A ∪B as:

|U〉 =
MA,MB∑

i=1,j=1

ψij|i⊗ j〉. (3.1)

It is straightforward to show [102] that the optimal way to describe the universe by using

only a few p << MA states of the system embedded in the environment is obtained by

using the p eigenvectors corresponding to the largest eigenvalues of the density matrix:

Dii′ =
∑

j

ψ∗
ijψi′j . (3.2)

This approach is extremely simple and general, and it has been successfully applied in a

variety of embedding schemes such as, for instance, the popular density matrix renormal-

ization group (DMRG) [102].
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Within the implementation presented in this section, the universe is restricted to the

AGP wavefunction defined in Eq. 2.27: the many-body coefficients ψij of Eq. 3.1 are

replaced by the matrix Λ = {λi,j} (Eq. 2.28), the states {|i〉} are the one-electron basis

orbitals (Eq. 2.14) and the universe size MA +MB is the total basis set size Ntot.

3.2.2 Detailed procedure

Let us now consider the MOs representation of the geminal reported in Eq. 2.29. For the

sake of simplicity, we assume a real-valued geminal in the following discussion. The gen-

eralization to complex arithmetic is straightforward. As already mentioned, the geminal

is also suited to describe the Slater determinant as a limiting case when NMO = N/2.

In this situation, the pairing function becomes equal to the standard one-body density

matrix. The embedding proposed here is done at the geminal level, by left projecting

Eq. 2.29 over a single atom centered at R:

UR
proj(r, r

′) =
NMO∑

k

λMO
k ψproj

k,R (r)φMO
k (r′) = (3.3)

=
NMO∑

k

λMO
k

Ntot∑

i|Ri=R

Ntot∑

j

dki dkj χi(r)χj(r′) (3.4)

where the indices (i, j) run over the total basis set. The ψproj
k,R (r) =

∑

j|Rj=R dkjχj(r) are

the molecular orbitals restricted only to those components centered on the atom chosen

for the projection. Unless otherwise stated, hereafter we are going to omit the symbol R

in the projected quantities, for readability. The term defined in Eq. 3.4 carries information

on the intra-atomic electronic structure affected by inter-atomic interactions between the

site R and its environment. The inter-atomic interactions are explicitly kept by the

left-partial projection of the full density matrix.

For the next step of the procedure, we choose to represent the left-projected geminal of

Eq. 3.4 in terms of Ngeo ≪ NMO atomic hybrid orbitals φGEO
k , dubbed geminal embedded

orbitals (GEOs). The procedure explained in this Section aims at finding the coefficients

for this reduced basis set which best reproduce the initial uncontracted localized basis.

Using φGEO
k , left-projected on the atom located at R, and a set of auxiliary molecular

orbitals ψ̄k spanning all the basis set, we can rewrite Eq. 3.4 as follows:

Ūproj(r, r′) =
Ngeo
∑

k=1

φGEO
k (r)ψ̄k(r′). (3.5)

Notice that the auxiliary orbitals ψ̄k are defined, exactly as the standard φMO
k (r), as a

linear combination of the primitive Gaussian basis set. In order to find the best GEOs, we
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minimize the Euclidean distance L = |Uproj−Ūproj| between the original and the truncated

geminal functions. These functions are defined in R3 ×R3 in such a way that:

L2 = |Uproj|2 − 2
∑

k

∫

drdr′Uproj(r, r′)φGEO
k (r)ψ̄k(r′)

+
∑

k

∫

dr ψ̄2
k(r), (3.6)

where |Uproj|2 =
∫

drdr′U2
proj(r, r

′), and we assumed that the optimal atomic orbitals are

orthonormal. This assumption is valid without loss of generality, because - whatever is

the solution for the minimum - we can always orthogonalize the corresponding optimal

orbitals φGEO
i and get a solution written in the same form as in Eq. 3.5. Taking the

variation over all possible unconstrained functions ψ̄(r), one can show that the steady

condition δL2

δψ̄k(r)
= 0 implies:

ψ̄k(r) =
∫

dr′Uproj(r′, r)φGEO
k (r′). (3.7)

Replacing Eq. 3.7 into Eq. 3.6 yields:

L2 = |Uproj|2 −
∑

k

∫

drdr′Dproj(r, r′)φGEO
k (r)φGEO

k (r′), (3.8)

where Dproj is the density matrix kernel defined, in analogy with Eq. 3.2, as:

Dproj(r, r̄) =
∫

dr′Uproj(r, r′)Uproj(r̄, r′). (3.9)

Thus, in order to minimize L2 one needs to maximize the quadratic form involving Dproj,

with the constraint that the orbitals φGEO
k (r) are orthonormal. Dproj is a density matrix

kernel and therefore it is a positive definite symmetric matrix which satisfy the mini-

mum/maximum property of symmetric operators. It is thus clear that L2 is minimized

just when the optimal GEOs coincide with the Ngeo eigenvectors of the density matrix

Dproj with maximum eigenvalues wi. Indeed, all the eigenvalues wi must be positive, and

the corresponding eigenvectors are obviously an orthonormal set of states, consistently

with the assumption.

From Eq. 3.9 and the choice of the atomic projectors used in its definition, it follows

that the density matrix kernel Dproj can be expressed in terms of the atomic basis {χi}
restricted around a given atom at the selected position Ri = R. As a consequence, also

the optimal GEOs can be expanded on the same local basis:

φGEO
i (r) =

∑

j|Rj=R

dGEO
ij χj(r). (3.10)
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In the non-orthogonal finite basis {χj(r)}, this turns into the generalized eigenvalue equa-

tion:
∑

j|Rj=R

[

(λsλ†)s
]

ij
dGEO
kj = wkd

GEO
ki for i s.t. Ri = R, and j s.t. Rj = R , (3.11)

where the matrix λ has been defined through the transformation in Eq. 2.31 by restrict-

ing the indices i, j to span only the basis elements centered around the atom located

at R in order to fulfill the left-projection. sij = 〈χi| χj〉 is the positive definite ba-

sis set overlap matrix. Eq. 3.11 can be immediately solved by standard linear algebra

packagesa, by considering that the overlap matrix s is symmetric and positive definite.

After the diagonalization, the eigenvector coefficients satisfy the orthogonality require-

ment dGEOs(dGEO)† = I, that we have previously assumed. Moreover, the truncation

error, i.e. the residual distance, is ǫL = |Uproj|2 −
∑p
i=1 wi.

Thanks to the embedding scheme, the GEOs in Eq. 3.10 are the best compromise

between basis set size and accuracy while they also carry physical information on the

most representative atomic states. Furthermore, GEOs are expanded over the whole set

of atomic angular momenta, therefore they are hybrid orbitals. Thanks to this feature

they can automatically account for non-trivial chemical hybridization and for the crystal

field effect in solids [103].

Optimal hybrid orbitals are typically determined within a small cluster (supercell) and

then ported to describe larger molecular (solid) models. The optimal GEOs describing

each atom can be evaluated by applying the procedure outlined in this section to previ-

ous DFT calculations (SD wavefunction), or fully optimized JAGP wavefunctions after

removing the Jastrow factor.

Once the optimal GEOs are constructed, the AGP wavefunction of Eq. 2.28 can be

rewritten as:

Φ̃(r, r′) =
Nat∑

a,b

Ngeo∑

i,j

λ̃a,bi,j φ
GEO
i,a (r) φGEO

j,b (r′). (3.12)

where the λ̃a,bi,j are given by the overlap maximization of the latter Φ̃ with the original

Φ in the R
3 × R

3 space, and we explicitly write the GEOs dependence on the atomic

index. Recalling that PVB represents the number of parameters in the uncontracted

representation, it is evident that Eq. 3.12 greatly reduces the dimension of the basis as

the number of variational parameters amounts now to:

PGEO ∝ (Ntot geo)2 +Ntot geo ×Nbas ≪ PVB, (3.13)

aThis linear problem corresponds to a generalized eigensystem equation of the type ABx = λx with
A = λsλ† a symmetric matrix and B = s a symmetric and positive definite one, x and λ being the
eigenvector and the corresponding eigenvalue, respectively.
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where Ntot geo = Ngeo ×Nat is the total number of GEOs in the optimal basis set.

Table 3.1 – Overlap 〈Φ̃|Φ〉2/(〈Φ|Φ〉〈Φ̃|Φ̃〉) between the geminal Φ of the fully optimized Jastrow-single
determinant wave function of the water molecule in the primitive basis set (see Sec. 3.2.4 for more
details) and the best Φ̃ developed on the GEO/ANO basis set reported in the first column for oxygen
and hydrogen; for instance, (8O,5H) means that we used 8 GEOs/ANOs for the oxygen atom and
5 GEOs/ANOs for the hydrogen atom. Given the basis set size, the contracted atomic orbitals are
determined in the “standard” way (third column, Eq. 3.16) and by the geminal embedding scheme
described in Sec. 3.2 (second column). The embedding scheme presented here systematically gives better
overlaps and it converges to full overlap already for a (4O, 4H) basis set. The last line corresponds to
the complete basis set limit for the contractions with respect to the space spanned by the primitive basis
set, where all methods have to converge by definition (as it is actually found numerically).

GEO/ANO GEOs “standard” ANOs

basis set overlap (%) overlap (%)

(4O,1H) 99.8390 99.0696

(8O, 2H) 99.9511 99.1846

(4O, 4H) 100.0000 99.1929

(4O, 5H) 100.0000 99.1933

(8O, 5H) 100.0000 99.2188

(12O, 6H) 100.0000 99.8305

(20O, 8H) 100.0000 99.9458

(30O, 10H) 100.0000 100.0000

3.2.3 Comparison with standard natural orbitals

The concept of atomic natural orbitals (ANO), introduced by Löwdin in 1956 [104], has

been widely developed in quantum chemistry. Efficient schemes to find optimal hybrid

basis set contractions have been devised [105, 106] and efforts have been devoted to extract

clear chemical pictures from ANOs [107]. However, the typical scheme for building ANOs

differs from the embedding procedure introduced in this section. Standard ANOs are

defined as eigenstates of the local atomic density matrix left and right projected on the

given site. Given D = D(r, r′) the density matrix generally defined in Eq. 3.2, the atomic

projected version read:

DR
atom = Pat

RDPat
R , (3.14)

where Pat
R are the standard atomic projectors within a non-orthogonal basis set:

Pat
R =

∑

i|Ri=R

∑

j|Rj=R

|χi〉 s−1
ij 〈χj | . (3.15)
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This density matrix is clearly different from the left-projected one defined in Eq. 3.9 used

in our embedding scheme.

The optimal ANOs are obtained as the p eigenvectors with largest eigenvalue wi of the

following linear system:

∑

j

Dij
atomd

ANO
kj = wksijd

ANO
kj for i s.t. Ri = R, and j s.t. Rj = R. (3.16)

We carried out a comparison of the performances of the two techniques for effectively

reducing the basis set. For measuring the efficiency of GEOs and ANOs, we constructed

both basis sets with the same dimension Ntotgeo ≪ Ntot and then we computed the

normalized overlap between the pairing function expressed within the full basis set (Φ)

and the one expanded over the hybrid orbitals (Φ̃):
〈

Φ̃
∣
∣
∣ Φ
〉2
/ 〈Φ| Φ〉

〈

Φ̃
∣
∣
∣ Φ̃
〉

. We found

that using GEOs yields a better overlap with respect to standard ANOs no matter the

chosen basis set size, as benchmarked with the water molecule in Tab. 3.1.

3.2.4 Application to the water monomer

The purpose of this section is to apply our geminal embedding scheme to a simple, but

challenging system: the single water molecule.

H2O is ubiquitous on Earth and is a key element for life. The single water molecule is

the main building block of the hydrogen-bonded network, but its intra-molecular degrees

of freedom will also significantly affect the intermolecular environment due to its large

dipole moment and the strong directionality of the H bond. Despite its importance, its

exotic properties arising from its unique structure are not fully understood yet. It is thus

not surprising that a vast amount of experimental as well as theoretical works has been

published on this subject (see the introduction to this Chapter for more details).

The importance of the basis set in the description of the properties of water has been

thoroughly investigated by the quantum chemistry community [108, 109]. Moreover, a

recent QMC study on H2O has appeared [71], which uses the same JAGP ansatz as

ours. H2O represents therefore a perfect laboratory for testing our embedding scheme.

In addition, an optimal reduction of the number of variational parameters in the ansatz

is crucial to tackle larger water clusters such as the protonated water dimer, subject of

Sec. 3.3.

In this Section, we assess first the accuracy of our QMC framework in predicting the

structure and energetics of water, with a particular focus on the impact of static electron

aHere the number of parameters is the same as the one in the JAGP wave function since in the JSD
ansatz we rewrite the corresponding geminal (of rank N/2) on the uncontracted basis in order to optimize
the MOs, as explained by Ref. [110].
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Table 3.2 – VMC energies of the water molecule and number of variational parameters in the QMC
wave functions. The geometry is the experimental one in the pseudopotential calculations, while it is
the QMC relaxed one in all-electron calculations. The total number of parameters (last column) and the
wave function quality vary depending on the contraction level of the GEOs used in the determinantal
part. The Jastrow functional form has been kept fixed in all calculations. This gives a number of 195
and 418 Jastrow parameters for the pseudopotential and all-electron calculations, respectively. The other
parameters are in the determinant, coming from both λa,b (third to last column) and the basis set, i.e.,
χa

µ(r) (Eq. 2.14) for the primitive Gaussian basis and φGEO
i,a (r) (Eq. 3.10) for the GEOs (second to last

column).

Wave function ansatz VMC energies number of parameters

Energy Ex (Ha) Variance (Ha2) Ex − EJSD (mHa) λa,bµ,ν χaµ, φ
GEO
i,a total

pseudopotential calculations

JSD: primitive GTOs -17.24821(7) 0.2655(6) 0.0 682 18 895a

JAGP: (4O,1H) GEOs -17.25013(8) 0.2635(12) -1.91(11) 21 158 374

JAGP: (4O,5H) GEOs -17.25183(6) 0.2510(6) -3.62(10) 105 238 538

JAGP: (8O,2H) GEOs -17.25267(7) 0.2426(18) -4.46(10) 78 298 571

JAGP: (8O,5H) GEOs -17.25302(6) 0.2412(34) -4.89(10) 171 358 724

JAGP: primitive GTOs -17.25389(6) 0.2296(5) -5.68(10) 682 18 895

all-electron calculations

JSD: primitive GTOs -76.40025(8) 1.412(3) 0.0 1383 19 1820a

JAGP: (9O,2H) GEOs -76.40504(9) 1.399(6) -4.79(12) 91 361 870

JAGP: primitive GTOs -76.40660(7) 1.374(3) -6.35(11) 1383 19 1820

correlation on this system. Starting from this reference JAGP wavefunction, we construct

several GEO basis sets and select the one which yields the best compromise between

accuracy and computational efficiency. This basis will be then transferred to the H5O
+
2

model (Sec. 3.3). A complementary investigation on the impact of the pseudopotential

is also carried out in this section. Its outcome is valid also in the case of the protonated

water dimer.

For all QMC calculations presented here we use a primitive Gaussian basis ofO[5s, 5p, 2d]

and H [4s, 2p] for the determinantal part, while for the Jastrow factor it is O[3s, 2p, 1d]

and H [2s, 1p]. The first guess for the determinantal basis set is obtained by performing

DFT(LDA) energy minimization starting from the even tempered form, as explained in

Sec. 2.2.2. Afterwards, the exponents of the localized orbitals are fully optimized with

the SR method. No spin-dependent term is included in the many-body Jastrow factor

by avoiding spin contamination in the homogeneous part and by setting to zero all the

matrix elements Sa,bµ,ν in Eq. 2.35. Note that the latter basis set has been recently claimed

by Ref. [71] to be one of the most accurate. If not otherwise specified, the core electrons of

the oxygen atom are replaced with BFD pseudopotentials (see Sec. 2.3), whereas hydrogen

is always treated all-electron.
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At first, we test the energetics yielded by the JAGP wavefunction against the simpler

JSD. These two functional forms are defined in Sec. 2.3.3. This comparison is crucial in

order to select the best reference wavefunction from which the geminal embedded orbitals

are constructed.

The energy difference is reported in Tab. 3.2. This Table highlights the size of static

correlations in the system, which amounts to 5-6 mHa. This leads also to better geomet-

rical properties, as seen in Tab. 3.3. The JAGP geometry is closer to experiment than

the JSD one, in both the OH distance and the HOH angle. The structural effects of

static correlations in the water molecule have been already pointed out in Ref. [71], where

they were attributed mainly to a change in the local description of the oxygen atom.

Thanks to the flexibility of the MOs representation (Eq. 2.29), the AGP wavefunction

allows us to analyze in deeper detail the role of static correlation. If one goes beyond

the SD wavefunction – for the H2O case this is achieved by taking NMO > N/2 = 4 for

pseudopotential calculations and 5 for all-electron calculations – the impact of correlation

is linked to the modulus of the AGP eigenvalues λMO
k , obtained by diagonalizing the full

Λ matrix (Eq. 2.28). When the geminal embedded orbitals are used for representing AGP

(Eq. 3.12), the physical implications are more subtle. Indeed, in this case the resulting

AGP wavefunction (without the Jastrow factor) is expanded over a hybrid basis set (the

GEOs) which mixes several angular momentum channels, and it is directly related to the

one-body density matrix of the system. The AGP eigenvalues for the water monomer are

plotted in Fig. 3.1 for different basis sets.

The Figure shows that indeed the orbitals above the HOMO ( which corresponds to

the highest occupied molecular orbital in the SD representation) have a sizable, i.e.

∼ 10−2, eigenvalue, with a distribution which falls abruptly to zero only after the 40-

th orbital (gray area in the plot). This reflects the multi-determinant character of the

water molecule, taken into account by the AGP ansatz. This proves that, although the

entanglement of quantum levels at the origin of static correlations can come from the oxy-

gen atom, its impact in water has a genuine molecular character. Last but not least, the

multi-determinant AGP representation leads to a better description of the nodal surface

of the true ground state, with a gain of about 2.5 mHa in the fixed node LRDMC energy

with respect to the one obtained by using the JSD as trial wave function, as reported in

Tab. 3.4.

It is important to remark that by using the full primitive basis the total number of

JAGP parameters reaches the value of 895 (last column of Tab. 3.2). Whereas this

value remains affordable with small molecular clusters, it likely leads to computationally

unfeasible calculations when the dimension of the simulation model is increased. In fact,

without using any basis set contraction, the number of variational parameters of the
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Figure 3.1 – Semilog plot of the modulus of the AGP eigenvalues versus the molecular orbital index
for different basis sets and calculations. The orbital indexes include always the oxygen 1s electrons,
replaced in the pseudopotential calculations. The green area represents the exactly occupied molecular
orbitals in the SD representation, with λi = 1 for i ∈ {1, . . . , HOMO} and λi = 0 for i ≥ LUMO. In
the AGP representation, by diagonalizing the geminal we obtain the corresponding molecular orbitals
(eigenvectors) and their occupations λAGP

i (eigenvalues). In the AGP, also the orbitals above the HOMO
are occupied, with a weight which jumps across the HOMO to LUMO transition (in going from the green
to white region). The gray area shows when the MO occupation tail falls rapidly to zero in the full AGP
(expanded on a primitive basis set), signalling that the MOs above that threshold start to be irrelevant
to describe the static correlations in the system.

Table 3.3 – Geometrical properties of the global minimum of the water molecule. We report a comparison
between different QMC wave functions and experimental results[111].

OH (Å) ∠HOH (◦)

pseudo JSD 0.9542(4) 104.730

pseudo JAGP 0.9549(4) 104.549

all-electron JSD 0.9539(4) 105.187

all-electron JAGP 0.9557(4) 105.101

experiment[111] 0.95721(30) 104.522(50)

determinant is fixed by the size of the matrix {λa,bµ,ν} of Eq. 2.28. This dimension of this

matrix clearly increases as the square of the primitive basis set size.

In order to alleviate this problem, we use the geminal embedding scheme to create the

optimal hybrid contractions (Eq. 3.12). Since we demonstrated the reliability of JAGP to

describe water properties, we use this wavefunction as the starting point for constructing

the GEOs.

The results are reported in Tab. 3.2. The smallest basis set which includes the 1s for

H and the 2s and 2p orbitals for O, thus taking into account the 2s2p near degeneracy
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Table 3.4 – LRDMC energy results extrapolated to the zero lattice space limit. The LRDMC calculations
are performed in the fixed-node approximation. In the last row, we compute the energy gain due to a
better nodal description provided by the JAGP wave function with respect to the JSD one. Note that
the agreement between the pseudopotential and all-electron calculations has an accuracy of the order of
0.1 mHa, despite their sharp difference in total energies.

pseudo all-electron

EJSD (Ha) -17.26280(6) -76.42475(15)

EJAGP (Ha) -17.26528(6) -76.42690(14)

EJAGP − EJSD (mHa) -2.48(9) -2.15(21)

at the atomic O level, is the 4O 1H hybrid set (in self-explanatory notations). It gives

the poorest energy and variance among the GEO basis sets considered, though, being

lower than the JSD ansatz. The best energy is obtained with the largest hybrid basis

tried here, namely the 8O 5H set. It recovers a large fraction of the static correlation

and its energy is less than 1 mHa above the uncontracted JAGP one. However, the price

to pay is that the parameters reduction is weak, the total number of parameters being

close to the one of the full JAGP expansion (see last column of Tab. 3.2). Indeed, while

the number of λa,bµ,ν is still significantly lower than the one for the uncontracted basis

set, the number of parameters required to build the GEOs grows too much. The best

compromise between efficiency, i.e. total number of variational parameters, and accuracy,

i.e., variational energy, is provided by the 8O 2H basis, as it yields a significant gain in

energy with a small/moderate number of parameters. This advantage will be remarkable

for large numbers of atoms, as the number of variational parameters corresponding to the

GEOs grows only linearly with the number of atoms (see Eq. 3.10); on the other hand, the

number of parameters corresponding to λa,bµ,ν , grows instead quadratically, but it remains

still affordable since it is dramatically reduced by this approach (see Tab. 3.2).

Finally, we study how the AGP spectrum changes with the contracted hybrid basis sets.

Fig. 3.1 shows that, after a complete wave function optimization, the modulus of the GEO

eigenvalues covers the 10−2−10−4 range of the fully uncontracted AGP expansion, except

for the smallest 4O 1H basis, which clearly spans a too restricted Hilbert space. Moreover,

we checked that the JAGP expanded on the optimal 8O 2H basis gives the same fixed node

LRDMC energy as the full JAGP, signalling that the nodal surface is properly described

even by the hybrid 8O 2H contraction. Therefore we are going to use it in the study of

the protonated water dimer presented in the next Section. The gain in efficiency of the

GEOs basis set is expected to be larger and larger as the system size increases, as the

quadratic growth of the number of parameters in the atomic basis set with the number

of atoms is strongly dependent on the primitive basis set size.
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In conclusion to this section, we assess the accuracy of the pseudopotential approxima-

tion by presenting all-electron calculations on H2O. With respect to the pseudopotential

case, the primitive and contracted basis sets for oxygen have been extended in order

to account for the additional 1s electrons. The primitive basis set is then O(6s6p2d)

and O(3s3p1d) for the determinant and Jastrow term respectively, while the optimal

contracted hybrid basis set is 9O 2H. In Tab. 3.2 we report the variational energies for

different wave functions. The energy gain provided by the all-electron JAGP wavefunction

is very close to the one in the pseudopotential calculations. The substantial agreement be-

tween the two calculations is apparent also in Fig. 3.1, where the eigenvalues of the higher

energy molecular natural orbitals in the AGP behave similarly. The LRDMC energy dif-

ference between the JAGP and JSD trial wave functions calculated using all electrons

coincides within the error bars with the difference calculated with pseudopotentials, as

shown in Tab. 3.4. The nodal contribution to the fixed-node energy is the same. The

JAGP LRDMC energy is one of the best ever published, in statistical agreement with the

value computed by Lüchow and Fink [112] (−76.429(1) Ha), who used 300 determinants

in the trial wave function, and with the value from Ref. [71] (−76.42660(2) Ha), where

the same ansatz as ours for the trial wavefunction has been used. The JAGP LRDMC

projected energy is only 11 mHa higher than the extrapolated exact result of −76.438

Ha [113].

The all-electron calculations confirm the importance of including static correlations to

have a better description of the geometry, as shown in Tab. 3.3. However the HOH angle

turns out to be less accurate than the one obtained with pseudopotentials if compared to

experiment, most probably because it is a quantity very sensitive to basis set convergence,

which is harder to reach in all-electron calculations. Another drawback of all-electron

calculations is of course the larger variance for an equivalent wave function ansatz, due to

the 1s electron fluctuations, as one can easily evince from comparing the values presented

in Tab. 3.2.

Due to the larger primitive basis set required in all-electron calculations, the parameter

reduction allowed by the GEOs contraction (9O 2H) has a great impact on the efficiency.

The total number of parameters is reduced by almost a factor of 4 in the determinantal

part of the single molecule, without any significant loss of accuracy in the JAGP total

energy (see Tab. 3.2).

The use of the BFD pseudopotential for oxygen, and the JAGP ansatz together with the

optimal GEO basis set obtained for the water molecule, is transferred to the protonated

water dimer studied in the next section.
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3.3 Proton transfer reactions made simple: the Zun-

del model

The protonated water dimer, or Zundel model, represents the simplest model for PT

in aqueous systems. We study the energetics of H5O
+
2 by choosing a suitable reaction

coordinate (RC). Selecting a RC allows to reduce the complexity of the full-dimensional

PES and project it onto a single-dimensional subset which retains the desired physical

features of the full hypersurface.

As modeled by our system, the PT reaction takes place in three different steps. First,

the excess proton is bound to one water molecule forming an H3O
+ + H2O complex.

By thermal fluctuations the oxygen-oxygen separation can approach the optimal distance

of the Zundel complex (around 2.39 Å); at this stage the system assumes a “Zundel

configuration” with the proton equally shared between the two oxygens. A further stretch

of OO destabilizes the Zundel configuration and a new H2O+H3O
+ complex is produced.

The overall effect of this process is a transfer of a proton along the hydrogen bond between

two oxygen atoms. This mechanism suggests the choice of the OO separation as RC for

the protonated dimer potential energy curve.

In the following we present the geometry and energetics of the protonated water dimer

at the VMC and LRDMC levels and we compare our results with the quantum chemistry

“golden standard” CCSD(T) approach. All QMC calculations are performed with the

JAGP wave function ansatz with the optimal GEOs obtained for the water molecule in

Sec. 3.2.4. The results presented in this Section are published in Ref. [114]

3.3.1 Properties of the symmetric global minimum

Figure 3.2 – QMC optimized geometries for global C2 minimum (left) and for Cs local minimum (right).
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The minimum energy structure of H5O
+
2 has been debated in literature, as there are

two candidates with competing energies: a C2 symmetric structure, commonly known as

the Zundel configuration, with the proton evenly shared between the two oxygens, and a

Cs-Inv one with the proton slightly closer to one H2O molecule (see Fig. 3.2). Several ab

initio investigations [97, 96] have shown that a better treatment of electron correlation

results in a change of the ground state (GS) geometry from the Cs to the C2 configuration.

Accurate highly-correlated studies [115, 116, 96, 100] have eventually confirmed that the

global minimum is C2-symmetric.

At a QMC level of theory, the H5O
+
2 GS has a C2 Zundel configuration with centrosym-

metric excess proton (left-hand side of Fig. 3.2), in agreement with previous studies. The

main geometrical parameters of the global minimum are presented in Tab. 3.5, for both

the pseudopotential and all-electron calculations.

Table 3.5 – Geometrical properties (distances in Å, angles ∠ and dihedral angles ω are in ◦) of the C2-
symmetry minimum of protonated water dimer, comparison between different computational methods.
See Fig. 3.2 (left-hand side) for atomic notation.

DFT(PBE) DFT(B3LYP) [115] QMC - with pseudo QMC - all-electron CCSD(T) [100]

O1O2 2.4111 2.3847(5) 2.3905(4) 2.3864

O1H+ 1.2074 1.2172 1.1942(8) 1.1989(5) 1.1950

H+O2 1.2074 1.1930(5) 1.1944(6) 1.1950

∠O1H
+O2 173.661 173.6 174.71(7) 174.43(9) 173.730

O1H1 0.9697 0.9784 0.9605(8) 0.9630(7) 0.9686

O1H2 0.9691 0.9778 0.9650(8) 0.9628(6) 0.9682

∠H1O1H2 109.161 109.16(9) 109.40(7) 108.8

ω-H1O1H
+O2 295.690 293.5 296.6 295.3

ω-H2O1H
+O2 163.809 158.5 162.0 163.6

Table 3.6 – Geometrical properties (distances in Å, angles in ◦) of the Cs-Inv minimum of protonated
water dimer. See Fig. 3.2 (right-hand side) for atomic notation.

DFT - B3LYP[115] QMC - with pseudo QMC - all-electron CCSD(T)[100]

O1O2 2.3996(6) 2.3913(3) 2.3989

O1H+ 1.1154(8) 1.1285(5) 1.1233

H+O2 1.2507 1.2852(4) 1.2648(4) 1.2720

∠O1H
+O2 175.4 176.5(1) 175.29(6) 175.646

O1H1 0.9746 0.9641(7) 0.9635(4) 0.9641

O1H2 0.9741 0.9625(4) 0.9616(5) 0.9645

∠H1O1H2 110.56(8) 110.66(6) 110.153

When compared with CCSD(T), the QMC ground state geometries agree within an

atomic separation of 0.005 Å. The agreement in the intra-molecular angles is within 0.3◦,
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while the largest discrepancy between QMC and CCSD(T) is in the dihedral angles ω

between two H2O planes, which are related to soft vibrational modes and therefore affected

by a larger statistical bias during the relaxation. Nevertheless, these differences do not

affect the overall description of the GS and the energetics of the system.

In the present study, also the Cs-Inv structure has been taken into account (right-hand

side of Fig. 3.2). Tab. 3.6, which reports the VMC optimized Cs-geometries, confirms

the trend seen in Tab. 3.5 for the GS, although the discrepancies in the bond lengths

are slightly larger between different methods, the CCSD(T) values being in between the

all-electron and pseudopotential VMC results.

In the pseudopotential calculations, the energy difference between the Cs configuration

and the C2-symmetric global minimum turns out to be 0.25(8) Kcal/mol at the VMC

level, and 0.23(8) Kcal/mol at the LRDMC level. This is in satisfactory agreement with

previous results carried out with Møller-Plesset (MP2) perturbation theory [116] (0.28

Kcal/mol) and CCSD(T) [100] (0.46 Kcal/mol) techniques.

3.3.2 Stretching the OO distance

From the C2-sym global minimum we stretch the OO distance in order to study the

potential energy curve and elucidate the PT character in the dimer. We verified that an

analogous stretch from the Cs local minimum yields a higher energy over the entire OO

range and thus we disregard this possibility.

The structural relaxation at the VMC level for fixed OO separation requires a careful

procedure due to the flatness of the PES. Starting from a DFT(PBE) optimized geometry

and a JAGP variational wave function fully optimized in the electronic part, the atomic

coordinates are relaxed with the stochastic reconfiguration method employing the AAD

technique for ionic forces evaluation (see Sec. 2.5 for technical details).

For the sake of comparison, we minimize a parameterized full-dimensional PES fitted

from CCSD(T) calculations [100] to find the best coupled cluster estimates of energy

and geometry. By means of the downhill simplex minimization technique, we find the

configuration of lowest CCSD(T) energy at the same constrained OO distance as the

corresponding QMC and DFT calculations.

In Fig. 3.3 we plot the energy landscape along the RC for DFT(PBE), CCSD(T), VMC

and LRDMC, the latter computed at the VMC geometry. For the VMC technique, we

also report all-electron calculations for some OO separations. We notice a good agreement

among all techniques in the region at the left of the global minimum of the curve, except

for a constant shift by 0.02 Å between the DFT(PBE) results and the others. The PBE

OO minimum is indeed located at 2.41 Å, while the minimum of the other methods turns
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Figure 3.3 – Potential energy curve (Kcal/mol) of the protonated water dimer projected on the OO

distance. Comparison between different computational methods. Structural relaxation is performed at
each level of theory, except for the LRDMC landscape which uses VMC relaxed structure. Each curve
has its minimum as reference point.
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Figure 3.4 – CCSD(T) and VMC energy differences (Kcal/mol) as a function of the OO distance (Å)
reported in Fig. 3.3 plotted with respect to the LRDMC energies differences (the zero of the y-axis). Full
potential VMC results are reported for a few points along with dissociation energies. The green area
represents the statistical error bar achieved in a typical LRDMC run, i.e. ∼ 0.1 Kcal/mol.

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

∞2.2 2.4 2.6 2.8

E
ne
rg
y
[K
ca
l/m
ol
]

d(O1O2) [Å]

dissociation

ECCSD(T)−ELRDMC − pseudopotential
EVMC − pseudopotential−ELRDMC − pseudopotential
EVMC − full potential−ELRDMC − pseudopotential

out to be at ∼ 2.39 Å. Hence this part of the energy curve is only slightly influenced by

a better treatment of correlations.

On the other hand, the region at the right of the minimum, at intermediate OO dis-

tances (≥ 2.55 Å), displays a different behavior. The DFT(PBE) calculations overes-

timate the slope of the curve with respect to the most accurate techniques. LRDMC,

which yields the best QMC correlation energy, shows a remarkably good agreement with
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the state-of-the-art CCSD(T) results. In particular all CCSD(T) values are in the range

of ∼ 0.3 Kcal/mol, three times the statistical error of the LRDMC calculations, as shown

in Fig. 3.4. This Figure also shows that pseudopotential and all-electron VMC calcula-

tions are in statistical agreement for the reported OO separations. This demonstrates

the quality of the BFD pseudopotentials in the Zundel ion, verified also in Tab. 3.5 and

Tab. 3.6 for the geometry of the C2-sym and Cs-Inv minima, respectively (see Sec. 3.3.1).

As mentioned before, the curves in Fig. 3.3 are obtained with the minimum energy

geometry at each level of theory (except for the LRDMC curve, whose geometry is set

at the VMC level). In order to have a more reliable comparison and avoid the bias from

the use of different geometries, we carried out the same calculations employing the VMC-

optimized structures for every technique. The result is reported in Fig. 3.5. The trend

displayed in Fig. 3.3 for method-optimized geometries is remarkably enhanced when the

same configuration of the dimer is considered. Away from the minimum, the DFT(PBE)

energies show a larger overestimation of the slope.

Figure 3.5 – Protonated water dimer energy landscape (Kcal/mol) as a function of the OO distance
(Å). All the calculations are performed at the VMC-optimized geometry. The zero energy reference point
corresponds to the minimum of each curve.
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The slope of the dimer potential energy curve is related to the behavior of the excess

proton in the system. In Fig. 3.6 this property is elucidated. We report the separations

between the excess proton and each of the two oxygens in the same plot: O1H+ and

H+O2. The structure of the dimer is relaxed at different levels of theory, with the same

procedure used to obtain the potential energy curve in Fig. 3.3. The plot clearly shows

the appearance of two distinct regimes of the dimer. One is characterized by a symmetric

Zundel configuration with the proton evenly bonded to the two oxygens; from the point

of view of proton transfer physics, it is basically equivalent to the GS configuration.
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Figure 3.6 – Separations (Å) between the two oxygens and the excess proton as a function of the reaction
coordinate for different computational methods. The QMC results are obtained by minimizing the VMC
ionic forces.
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Stretching the OO distance results in the formation of a H3O
+ +H2O complex with the

proton localized on one water molecule. These configurations belong to the asymmetric

regime of the dimer. Within this regime, the initial C2 point symmetry of the GS geometry

is broken due to proton localization.

The distances obtained by the VMC relaxation of the atomic coordinates are in excellent

agreement with the CCSD(T) calculations; in particular the root-mean-square distance

between the two data sets over the whole OO range is ∼ 0.007 Å for both O1H+ and

O2H+. Electron correlation plays a key role in determining the stability of the symmetric

configuration of the dimer. We define dc as the critical OO distance at which the symmet-

ric configuration of the excess proton is broken. The overestimation of the PES slope by

DFT(PBE) in Fig. 3.3 corresponds to an overestimation of dc by ∼ +0.13 Å with respect

to highly correlated ab initio methods beyond DFT. Furthermore DFT(PBE) poorly de-

scribes the geometry in the broken-symmetry region close to dc, where the discrepancy in

the OH+ distances is the largest (going up to 0.15 Å).

3.3.3 Implications for more realistic PT models

The zero-temperature potential energy curves reported in Fig. 3.3 and Fig. 3.5 seem to

conflict with the proton transfer mechanism discussed in the introduction of this Section,

since the configuration with centrosymmetric proton is energetically favored and there-

fore it represents a stable state rather than a transition state between two asymmetric
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configurations with localized proton.

However, this contradiction can be easily explained. Indeed, it has been shown in

Ref. [91] that the introduction of thermal and polarization effects due to the environment,

favors the asymmetric regime of the complex. At finite temperature the free energy

landscape displays a global minimum shifted towards the asymmetric regime and the

Zundel-like structure does not represent the energetically favoured configuration any more.

Moreover, a recent experimental result showed that the average OO distance in liquid

water is 2.81 Å [117] which clearly corresponds to a symmetry-broken configuration of

the dimer (see Fig. 3.6). In any case, in order to jump from a water molecule to one of

its neighbors, the proton must pass through a Zundel configuration. Correctly describing

the energetics and geometry of the protonated water dimer in the symmetry-breaking

transition region is therefore of paramount importance to get an accurate description of

PT in more realistic models.

As mentioned before, Fig. 3.6 highlights that at 0 K a better treatment of electron

correlation yields the asymmetric regime stable over a considerably wider range of OO

distances with respect to DFT results. As a consequence, we expect the calculated proton

diffusion in water to be very sensitive to the level of theory [91, 88, 87].

3.3.4 Properties of the symmetry-broken configurations

A quantity which has been extensively studied over the past years [118, 119, 87] is the

static proton transfer barrier, i.e. the barrier that the H+ has to overcome in order to

jump from one H2O molecule to the other at a fixed OO distance in the symmetry-broken

regime. This quantity does not provide a realistic comparison with the experimental

activation barrier for PT, as the OO distance will shorten during the proton hopping.

Nevertheless, it is relevant in order to provide a further check of the accuracy of our

QMC approach. Fixing the OO distance, the barriers are obtained as energy differences

between the asymmetric configuration with localized proton and a structure with the

excess proton at equal distance from the two oxygens. Calculations are performed in

three representative OO separations; the results are shown in Tab. 3.7, where they are

compared with existing data in literature.

The first OO distance is 2.47 Å, very close to dc displayed by highly correlated ap-

proaches (2.43 Å). In contrast, at a DFT level the configuration with centrosymmetric

proton is still energetically favored, as shown by Fig. 3.6. It has been noted [96] that the

PES in this region is particularly flat. Furthermore the potential energy curve of the dimer

develops on very tiny energy differences around dc. These issues make the calculations

in this region of the PES extremely delicate since the stochastic noise can considerably
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affect the quality of the QMC predictions.

Tab. 3.7 shows that the QMC and CCSD(T) results display a vanishing energy barrier

of the order of 0.2−0.3 Kcal/mol at a OO distance close to dc. The height of this barrier is

slightly above the attained statistical error in our typical QMC run. However, despite the

very sensitive behavior of the dimer PES around dc, the accuracy of our force minimization

algorithm allows us to account for the tiny energy differences involved. Thus it ensures the

necessary precision to describe the PT physics in the dimer. As we discuss in Sec. 3.3.5,

a similar accuracy can be achieved in larger molecular clusters with a reasonable amount

of computational time. Therefore our QMC framework guarantees a reliable description

of the PT physics also for more realistic models.

Table 3.7 – Static proton transfer barriers (Kcal/mol) at fixed OO separations. Comparison between
different level of theory at different geometries. If not specified, the structure is optimized with the same
method as the corresponding energy calculation.

Method O −O distance

Energy Geometry 2.47 Å 2.6 Å 2.7 Å

DFT(PBE) -0.74 0.19 1.94

VMC 0.28(6) 2.99(8) 5.99(8)

LRDMC VMC 0.37(8) 2.64(7) 5.57(7)

CCSD(T) 0.22 2.37 5.24

CCSD(T) VMC 0.28 2.29 5.32

CCSD(T) [119] MP2 2.08 4.85

QCISD(T) [119] MP2 2.06 4.82

MS-EVB [87] 2.05 5.11

MP2 [119] 1.77 4.39

The other results in Tab. 3.7 are obtained at larger oxygen separations, further away

from dc. They confirm the general behavior already seen along theOO reaction coordinate.

The LRDMC and CCSD(T) results are in a agreement to within 0.3 Kcal/mol, whereas

the VMC overestimates the barrier of about 0.6 Kcal/mol. As is known from previous

work, DFT substantially underestimates the barrier with respect to post-HF methods,

which provide a better treatment of correlation.

Finally, let us analyze the extreme limit of the asymmetric Zundel configuration, namely

when OO → ∞, with the formation of one H2O and one hydronium. The dissociation

energy De of H5O
+
2 is computed by setting the distance between the two oxygens to 14

Å. With the CCSD(T) PES, we checked that this is already in the large distance plateau.

We get a De of 33.02(9) Kcal/mol with VMC, and 32.54(8) Kcal/mol with LRDMC,

to be compared with the CCSD(T) value of 32.68 Kcal/mol computed in Ref. [100],
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while DFT(PBE) gives De = 29.55 Kcal/mol. The agreement between the LRDMC and

CCSD(T) is impressive, while it is good for the VMC estimate. This is mainly due to

the size consistency of the JAGP ansatz, obtained once the Jastrow factor is close to the

complete basis set limit [120]. The VMC and CCSD(T) dissociation energies are plotted

in Fig. 3.4 with respect to the LRDMC values.

3.3.5 Perspectives on realistic simulations

QMC methods present a favorable scalability with the number of particles with respect

to other highly correlated approaches such as CC. With the aim of demonstrating this

feature within our framework, we performed a benchmark calculation on a more realistic

PT model composed of 6 water molecules and one excess proton, which will be the subject

of a further study. In Tab. 3.8 we report a comparison of the computational time required

to carry out typical VMC and LRDMC runs for different sizes of the protonated water

cluster. These calculations are performed at fixed optimized variational parameters and

geometry (single-point calculations).

The VMC structural relaxations are more expensive than single-point runs since they

involve variational parameter optimization and evaluation of the atomic forces. Within

our calculations, the computational cost of a typical structural relaxation run in order

to obtain well-converged parameters and forces is about 5 times larger than the VMC

single-point calculations presented in Tab. 3.8. Note that this cost strictly depends on

the quality of the starting wave function and geometry of the system.

Table 3.8 – Total computational wall time in hours of typical VMC and LRDMC runs at fixed optimized
variational parameters and geometry. Calculations have been performed with the program TurboRVB [1]
on 32 thin nodes of the Curie HCP machine (2.7 GHz, 16 core Intel Sandy Bridge processors). The target
statistical error reached is of 0.06 Kcal/mol in total energies. A single water molecule, a protonated dimer
and a larger cluster of 6 water molecules with one excess proton are compared. The LRDMC is carried
out at a lattice space of 0.125 a0. CCSD(T) computational times have been evaluated by assuming a
perfect N7 scaling with the number of particles and no parallelization overhead.

Total wall time (h) on 512 CPUs

# of water molecules VMC LRDMC CCSD(T)

1 0.05 0.15 0.0001

2 0.24 2.13 0.01

6 6.49 164.35 21.87

All calculations in Tab. 3.8 have been carried out on the HPC Curie thin nodes (2.7 GHz

16 core Intel Sandy Bridge processors), and the QMC target statistical error has been set

to 0.06 Kcal/mol for the total energy. By means of a simple polynomial fit to the data in
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Tab. 3.8, we see that the LRDMC method, carried out at a lattice space of a = 0.125a0,

displays an almost perfect N4 scaling. The simpler variational Monte Carlo technique

shows an N3 scaling. As the variance scales linearly with N (see Eq. 2.3), and the QMC

all-electron move costs N3, the resulting theoretical scaling is N4. An apparent scaling

faster than N4 is probably due to the BLAS-based implementation [28] of the program

TurboRVB, which becomes more efficient as the system size increases, by reducing the

N4 prefactor the most. It turns out that LRDMC calculations are feasible in a reasonable

computational time for the 6 H2O cluster, while VMC calculations are still cheap at that

cluster size.

In order to contextualize the values reported in Tab. 3.8, we performed a benchmark

CCSD(T) calculation of the small Zundel ion on the same machine. We use Dunning’s

correlation-consistent aug-cc-pVTZ basis set, the same employed in Ref. [100] for fitting

the Zundel PES. Calculations have been done with the Gamess [121] program. A single-

point run on 128 CPUs costs 2.25 minutes, approximately one order of magnitude less than

the corresponding QMC calculation, since at this cluster size the large QMC prefactor

dominates over its favorable scaling.

According to the theoretical N7 scaling of CCSD(T), an analogous calculation on the

6-molecule cluster would have a slightly larger cost with respect to the corresponding

VMC calculation (see Tab. 3.8). Therefore, the 6-molecule complex represents a crossing

point in the relative efficiency of the VMC and CCSD(T) methods; it is obvious that a

further increase in the cluster size would make the QMC approach considerably favoured

in terms of computational demand. Moreover, the coupled-cluster estimated cost has

been obtained by assuming no parallelization overhead and no constraints of memory

allocation, criteria which are hard to meet in coupled-cluster calculations. On the other

hand, quantum Monte Carlo has less demanding memory requirements and an almost

perfect parallel scaling with the number of cores.

3.4 Conclusions

In this Chapter we have presented extensive applications of QMC calculations with the

JAGP ansatz to the description of water and its PT-related phenomenon.

At first, we introduced the geminal embedded orbitals. They are optimally constructed

hybrid orbitals which allow to be drastically reduced the number of variational parameters

within the JAGP wavefunction without appreciable loss of accuracy. This is demonstrated

by constructing the optimal GEOs basis set for the single H2O molecule and comparing

results obtained using the GEO basis with previously published QMC calculations.

The GEO basis is directly portable to the Zundel ion, a simple model for proton trans-
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fer reactions, consisting of two H2O moleculs and an excess proton. We study its energy

landscape as a function of the oxygen-oxygen distance with the VMC and LRDMC meth-

ods. LRDMC is shown to be in excellent agreement with the quantum chemistry “golden

standard” CCSD(T) (within 0.3 kcal/mol), whereas minor error (up to about 1 Kcal/mol)

are shown by VMC. On the contrary, DFT(PBE) strongly overestimates the slope of the

energy landscape away from the minimum. In contrast with previous works, where the

geometry was either taken from experiment or drawn from force field calculations, we are

able to optimize both the electronic and structural parts at the VMC level thanks to the

algorithmic differentiation technique explained in Chap. 2.

VMC structural relaxation provides geometries remarkably close to the ones obtained

from a CCSD(T) fitted PES. We show the presence of two distinct regimes of the dimer

depending on the OO distance: one with a centrosymmetric excess proton and the other

with the proton localized on one of the water molecules. The stability of these configura-

tions crucially depends on the level of theory: a better treatment of electron correlation

results in the stability of the asymmetric proton geometry over a wider range of OO

distances.

These results, together with the proton transfer static barrier and the dissociation

energy, show that our QMC approach has a global accuracy comparable with the most

advanced quantum chemistry methods in both geometry and energetics of the dimer. This

finding, combined with a better scaling with the system size demonstrated on a larger

water cluster, makes QMC a promising candidate to obtain a fully ab initio description

of the microscopic mechanism of proton transfer in water.

This Chapter concludes the first part of this thesis, devoted to the theory as well as

applications of QMC in the domain of electronic structure of molecular systems. We will

show in the next part of this manuscript that, at variance with its direct competitors, ab

initio QMC can be extended to the study of crystalline solids keeping the same precision

and scalability and thus opening the way to study a vast amount of new systems and

phenomena with an unprecedent level of accuracy.



Chapter 4

QMC simulations of extended

systems

4.1 Introduction

In this Chapter we present an overview on the theoretical and technical aspects necessary

to extend the continuum QMC framework to investigate the electronic structure of solids.

This task has taken a significant part of this thesis work.

The main outcome of the previous Chapters is that QMC techniques, among corre-

lated methods, are capable of reaching a precision down to ∼ 0.25 Kcal/mol ≈ 0.01

eV/atom whilst keeping at the same time an affordable computational cost. Coupled

cluster methods (CC), many-body perturbation theory (MBPT) and quadratic config-

uration interactiona (QCI) are highly-correlated alternatives which possess the crucial

property of being size-consistent and have been extended to tackle solids [123]. However,

as we will discuss more in detail, the explicit inclusion of electron correlation requires to

perform calculations at several sizes and then extrapolate the final result to the limit of the

infinite solid. On one hand, extrapolation generally requires to simulate a larger number

of atoms with respect to open systems. Furthermore, it is well known that the infinite-size

limit can yield divergent energies in perturbation theories such as MP2, MBPT or CC

methods [124, 125]. Only very recently, this problem has been overcome by combining

CC with the random-phase approximation [126] or by extending a variant of the method

called the “equation of motion” CC approach to periodic systems [127]. However, so far,

applications of quantum chemical methods to solids have been limited to the model level

aQuadratic configuration interaction [122] is a suitable modification of the CI algorithm which in-
troduces additional quadratic terms in the determinant coefficients. These new terms correct for size-
consistency errors in the total energy for single and double excitations CI methods.

71
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or to very simple compounds [128]. QMC does not suffer from these limitations and it

has a favorable scaling with the number of particles. Therefore, nowadays it represents

one of the few available choices for performing realistic ab initio investigations of solids.

There is a vast amount of physical situations where the mainstream electronic structure

methods based on effective independent electron theories fail.

The first and most obvious scenario where explicit introduction of electron correlation

is beneficial is the study of solids presenting strong electron correlation such as rare earth

materials and Mott insulators. Electron correlation arising from localized d and f orbitals

cannot be, in general, well accounted either by plain DFT or by hybrid DFT; the outcome

is often functional dependent and the DFT+U method, besides sacrificing a truly first

principle approach by introducing the screened Coulomb parameter U , has been proven

reliable in particular cases only. QMC offers an explicit treatment of electron correlation,

a purely first principle approach and the possibility to directly access the many-body

wavefunction of the whole crystal. Successful applications of QMC range from rare-earth

compounds [103], to transition metal oxides [129, 130] and, more recently, to the vast

domain of high-temperature superconductivity (see for instance Ref. [131]). For more

details on the last category we refer the reader to the introduction of Chap. 6 where we

present an extensive QMC investigation of the high-temperature superconductor FeSe.

As in the case of open systems, solids dominated by weak non-covalent forces such as

Van Der Waals interactions are not well accounted by DFT. Again, explicit inclusion of

dispersion effects in the DFT Hamiltonian has been proposed, but it often requires phe-

nomenological input parameters [132]. QMC can describe, with a unified ab initio frame-

work, both covalent and non-covalent bindings in an accurate way as demonstrated by

benchmark calculations [40] as well as applications to real systems such as solid neon [133],

glass polymorphs [134] and layered materials [135].

These features opened the way for investigating a variety of low-energy phenomena

within QMC. For instance, phase transitions on several kind of systems have been ad-

dressed [103, 136] and also the prediction of binding properties and diffusion coefficients

of molecules on different substrates represents a relevant application [137, 138], which can

be potentially applied to commercially important fields such as battery development.

Although a fully first principles study of solids by QMC is still at an early stage, it is of

paramount importance to develop reliable techniques and algorithms for extended systems

since in the near future large-scale QMC simulations will be feasible and this will allow to

deeply investigate emergent quantum phenomena with an unprecedent level of accuracy.

In the introduction to Chap. 6 we will discuss one of these open possibilities: a coherent ab

initio description of the microscopic pairing mechanism responsible for high-temperature

superconductivity.
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4.1.1 Organization of the Chapter

The main difficulty arising from the extension of the theoretical framework developed in

Chap. 2 to solids is the simulation of the infinite periodic structure of a crystal with a

finite and very small number of electrons and atoms. The structure of this Chapter closely

follows the one of Chap. 2 as well as the theoretical and programming efforts spent during

this thesis work for this purpose.

The first tool which has been modified is the built-in DFT code. In Sec. 4.2 we briefly

revise the Bloch theorem, the cornerstone of mean-field band structure theory. We will see

that the application of the Bloch theorem prescribes several important modifications to

the DFT algorithms ranging from a new single-particle basis set involving complex-valued

orbitals to the implementation of efficient schemes for sampling the Brillouin zone.

In Sec. 4.3 we show how to generalize the Bloch theorem to QMC calculations and how

solids must be described within a correlated approach. This involves the application of a

phase factor, or twist condition to the many-body wavefunction. In Sec. 4.4 we explain

how to extend the VMC and DMC methods to the case of periodic solids and thus

complex-valued trial wavefunctions. Finally, in Sec. 4.5, we provide a detailed overview

on the SR method for optimizing the wavefunction of periodic systems and we present an

original scheme allowing to efficiently optimize the ansatz using several twist conditions

at the same time. We draw the conclusions to this Chapter in Sec. 4.6.

4.2 Localized basis DFT calculations for periodic sys-

tems

4.2.1 Primitive cell calculations

A typical three dimensional crystal is composed by ∼ 1023 atoms. If one assumes that this

crystal has no defects this macroscopic structure can be fully described by the periodic

repetition along the axes of a single building block, which is usually called unit cell. Since

all unit cells are equivalent, they form a lattice in the real space – the Bravais lattice –

which is fully specified by a set of basis vectors {Ai} with i ∈ [1, 3]. A unit cell constructed

to contain only one lattice point is called primitive cell (PC). Given the PC and the basis

vectors, all lattice points can be written as: Lm = m1A1 +m2A2 +m3A3 where {mi} are

integers. Notice that there is an infinit number of equivalent choices of primitive vectors

generating the same lattice. Therefore the crystal structure of a solid is fully determined

by specifying both the basis vectors and the Bravais lattice.

We focus here on the DFT description of a solid, but it is important to bear in mind that
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the following discussion is valid for any effectively independent electron theory. Consistent

with the idea of an infinite solid, the crystal is usually modeled by a single PC with N

electrons. The PC is subjected to periodic boundary conditions (PBC) to mimic the

repetition along the Cartesian directions.

At variance with the open system case, the electronic density ρ(r) is now a periodic

quantity satisfying the relation: ρ(r + Lm) = ρ(r) for all lattice vectors. Therefore the

KS Hamiltonian introduced in Eq. 2.10 must have the following invariance property:

ĤKS(r + Lm) =

H1b(r + Lm) + VHa[ρ(r + Lm)] + VXC[ρ(r + Lm)] = ĤKS(r) (4.1)

where we use the fact that the external electron-ion potential is obviously periodic due to

the repetition of the same atomic arrangement.

4.2.2 The Bloch theorem

From Eq. 4.1, we notice that the Hamiltonian commutes with the single electron transla-

tional operator T̂L of any primitive lattice vector, hence: [ĤKS, T̂L] = 0. The two operators

possess the same eigenfunctions. It is a textbook demonstration that this leads to the

following condition on the whole set of KS orbitals {φi}:

φk
i (r) = eik·ruk(r) ∀ i ∈ [1, Norb], (4.2)

where k is a wavevector in units of 2π/L usually called k-point and uk(r) is a periodic

function such that uk(r + L) = uk(r) for any lattice vector. This relation must hold for

any single-particle orbitals describing a periodic solid. If PBC are applied to the primitive

cell, the inequivalent k-points can be chosen within the first Brillouin zone (1BZ) of the

reciprocal lattice corresponding to {Lm}.
From Eq. 4.2 it derives that the orbitals change only in a phase factor when an electron

is displaced of a lattice vector:

φk
i (r + L) = eik·Lφk

i (r) ∀ i ∈ [1, Norb]. (4.3)

The wavevector k, expressed in 2π/L units, can be interpreted as a generic boundary

condition applied to the single particle wavefunction when it wraps around cell boundaries.

k = (0, 0, 0) is equivalent to simple PBC, while a k = (1
2
B1,

1
2
B2,

1
2
B3) corresponds to fully

anti-periodic boundary conditions, where B1,B2,B3 are the reciprocal lattice vectors.

Eq. 4.2 and 4.3 are two equivalent formulations of the celebrated Bloch theorem.

The independent electron description of solids is tremendously simplified by this result.

In fact, the Bloch theorem implies that a uk(r) defined in the primitive cell is an eigenstate

of all translational operators on the Bravais lattice simultaneously.
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In principle, in order to extract intrinsic properties of the periodic system such as the

total energy or generic susceptibilities, one has to sum over all the single-particle orbitals

describing the infinite number of electrons in the system. Thanks to the Bloch theorem,

this formidable task reduces to solving the KS problem within a single PC for a given set

of wavevectors k lying in the 1BZ of the system. Therefore, for any periodic observable

f defined on the crystal lattice, its value for the infinite system, i.e. its thermodynamic

limit, is given by the following integral:

f∞(r) =
Ω

(2π)3

∫

ΩBZ

dk
∑

i∈occ

〈

φk
i (r)

∣
∣
∣ fi(r)

∣
∣
∣φk
i (r)

〉

, (4.4)

where the index n goes over occupied KS orbitals, Ω is the PC volume and ΩBZ = (2π)3

Ω
the

1BZ volume. Eq. 4.4 gives in principle a way to compute exact properties of the infinite

solid within an independent electron framework. However, in practical implementations

the integral must be approximated by an appropriate summation, as we shall see later on

in this section.

Notice that the Bloch wavefunctions defined in Eq. 4.2 are complex-valued. The basis

set over which they are expanded (see Eq. 2.13) must cope with this requirement. In the

following we present the technical aspects of the basis set for periodic systems implemented

in the TurboRVB code.

4.2.3 Gaussian basis set for periodic systems

The functional form of the localized orbitals used in both DFT and QMC calculations for

open systems has been discussed in detail in Sec. 2.2.2. The generalization to periodic

systems can be achieved following different routes presented in this Section.

Let us consider, for the sake of simplicity, a simulation box of lengths (Lx, Ly, Lz)

subjected to periodic boundary conditions. We denote Lm = m1A1 + m2A2 + m3A3

the lattice vectors associated with this simulation cell which can be either the primitive

cell or a larger box constructed using several primitive cells. The following discussion is

independent of this choice.

We require the orbitals to fulfill the single particle Bloch theorem (Eq. 4.2). In this

way, the KS eigenvectors expanded over this basis possess the same property and they

are hence suitable to describe the infinite solid. As already mentioned, in the case of a

generic wavevector kσ they must also be complex-valued. In the following, we explicitly

keep the dependence on the electron spin σ since we will leave the freedom to assign

different boundary conditions to ↑ / ↓ spin electrons.

We tested two possible choices for constructing these orbitals. The first one directly

plugs a phase factor in front of the localized functions introduced in Eq. 2.14 for open



76 QMC on extended systems

systems. A suitable coordinate transformation T̂ is applied to the electron-ion distances

as follows:

Xj(r,kσ) = eik
σ ·rχj(T̂ (r−Ra)) ∀ j ∈ [1, Ntot]. (4.5)

The operator T̂ makes the electron-ion distances in the argument of the localized orbitals

periodic functions of the simulation box. We choose this transformation in the following

way [139, 136]:

T̂ (r−Ra) =





(
Lx
π

sin
(
π

Lx
(rx − Lx)

))2

+

+

(

Ly
π

sin

(

π

Ly
(ry − Ly)

))2

+
(
Lz
π

sin
(
π

Lz
(rz − Lz)

))2




1/2

. (4.6)

This kind of transformation is very efficient since the derivatives of the periodic orbitals

can be evaluated analytically by simply applying the elementary chain rule. Initially, it

has been introduced [140] to avoid discontinuities in the wavefunction derivatives when a

particle crosses the boundaries between periodic images of the simulation box. It is well

suited for our purposes since it is apparent that the way Eq. 4.5 is constructed naturally

satisfies the Bloch theorem for single particle orbitals (Eq. 4.2).

We tested also a second functional form for the localized orbitals which is inspired by the

definition of Wannier functions [141]. These are localized orbitals obtained by performing

the Fourier transform of appropriately rotated Bloch eigenstates (Eq. 4.2). We consider

a Wannier orbital centered around the atomic position R and referenced with respect to

a generic lattice vector Lm. This reads:

w(r−Ra − Lm) =
Ω

(2π)3

∫

dkσ e−ikσ ·Lmφ(r−Ra,k
σ), (4.7)

where Ω is the volume of the simulation box. The Bloch functions are retrieved by

inverting the Fourier transform in Eq. 4.7 as follows:

φi(r,kσ) =
∑

m

e−ikσ ·Lmw(r−Ra − Lm). (4.8)

If we substitute the localized Wannier functions w(r−R) with our localized orbitals, we

obtain the final functional form of our single-particle orbitals:

Xi(r,kσ) =
∑

m

e−ikσ ·Lmχi(r−Ra − Lm). (4.9)

The sum goes over the infinite set of direct lattice vectors {Lm}. We truncate the sum-

mation for a given term m∗ which ensures the following condition to be fulfilled for all

orbitals:

ζi
[

(m∗
1Lx)

2 + (m∗
2Ly)

2 + (m∗
3Lz)

2
]α ≥ ǫcut with i ∈ [1, Ntot], (4.10)
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where the α = 1 for Gaussian type orbitals and α = 1/2 for Slater type orbitals. {ζi}
are the exponents of the localized functions (Eq. 2.14) and ǫcut is a suitable input cutoff

typically defined such as: e−ǫcut ∼ 10−6 − 10−8 a.u. Notice that the optimal value of this

cutoff is strongly system dependent and must be assessed for each simulation. We realized

empirically that the DFT calculations usually require a larger cutoff to obtain convergent

results with respect to the corresponding correlated QMC runs. Eq. 4.9 does not need

any coordinate transformation, thus the localized functions {χi(r)} can be evaluated with

the same routines employed for Eq. 2.14 already exploited for open systems.

The orbitals in Eq. 4.9 satisfy two important properties which are listed here and which

will be useful later on:

• when an electron is displaced of any lattice vector (r→ r+Ln) it picks only a phase

factor:

Xi(r + Ln,k
σ) =

∑

m

e−ikσ ·Lmχi((r + Ln)−Ra − Lm)

= e−ikσ ·LnXi(r,kσ) ∀ n (4.11)

This is nothing else than the Bloch theorem and it directly derives from the Wannier-

like construction of our orbitals.

• a similar relation holds when the atomic position Ra is translated by any lattice

vector (Ra → Ra + Ln):

XRa+Ln

i (r,kσ) =
∑

m

e−ikσ ·Lmχi(r− (Ra + Ln)− Lm)

= eik
σ ·LnXi(r,kσ) ∀ n (4.12)

The main drawback with respect to the first choice is that the computational cost

needed by the summation over lattice vectors is higher. However, as we will see in the

next Section, accurate many-body QMC calculations are typically performed on large

supercells, thus only one or two terms in the summation are necessary to satisfy the

cutoff condition in Eq. 4.10.

We carry out benchmark calculations on the DFT(LDA) determinant developed on

both basis sets in order to assess their accuracy. As apparent from Tab. 4.1, the second

implementation in Eq. 4.9 gives a lower DFT(LDA) energy for all tested boundary con-

ditions. Despite the non-variational nature of the DFT method when changing the basis

set functional form, a lower energy usually provides a better starting point for the QMC

wavefunction optimization procedure. In view of these results, we adopted Eq. 4.9 as the

basis set form for the determinantal part of the QMC wavefunction.
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Table 4.1 – Benchmark calculations on the solid bcc phase of hydrogen. Calculations are performed
within the primitive cell and a complex-valued wavefunction is used consistently for all boundaries. We
report the value of the DFT(LDA) energy in Ha/atom using the two different implementations of localized
orbitals discussed in the text.

k-point Energy (Eq. 4.5) Energy (Eq. 4.9)

(0.500, 0.500, 0.000) -0.449646 -0.460164

(0.500, 0.500, 0.500) -0.563586 -0.623700

(0.250, 0.250, 0.000) -0.459667 -0.461574

(0.250, 0.250, 0.250) -0.486947 -0.501187

(0.166, 0.166, 0.500) -0.475306 -0.479029

4.2.4 Generic boundary conditions

In several situations presented in this manuscript, it is useful to impose a boundary

condition k↑ for spin up particles different from k↓ applied to spin down electrons.

One scenario where this feature becomes unavoidable is to obtain an efficient QMC

determinant optimization with complex wavefunctions, as explained in Sec. 4.5.2. Another

technique which exploits the generic boundary conditions framework here introduced is

the flavor twist method for reducing finite-size effects, detailed in Sec. 5.7 of the next

Chapter.

Given the single-particle basis previously described, we can define new spin dependent

overlap matrices for basis set and density independent part of the Hamiltonian:

Sσij =
∫

dr X∗
i (r,kσ)Xj(r,kσ), (4.13)

SH,σij =
∫

dr X∗
i (r,kσ)ĤKSXj(r,kσ), (4.14)

where both S and SH are Hermitian matrices by definition and the overlap S is also

positive definite. A generalization to non collinear spins is possible, but it has not been

implemented.

Given the above definition of the overlap matrices, the exchange correlation part of ĤKS

is then computed using standard LDA or LSDA approximations. Since both VHa[ρ(r)]

and VXC[ρ(r)] are purely density dependent quantities, they are real-valued, thus keeping

the hermiticity of the full Hamiltonian. Ewald summations are used for dealing with

the divergence in the 1/r contribution to the integrated Coulomb potential due to the

interaction between periodic images. It is important to remark that, within our generic

boundary implementation, the Hamiltonian and thus the electronic density ρ(r) must

be always evaluated separately for ↑ and ↓ spin electrons at each self-consistent cycle.
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This leads to a double memory consumption for the complex DFT algorithm, making a

proper use of buffering more relevant than in the open systems case. Notice that, when

k↓ = −k↑, the eigenvectors of the two spin sectors are Hermitian conjugates of each other.

This ensures that the resulting determinant matrix Λ (Eqs. 2.28 and 4.29) possesses the

Hermitian property. In this case, suitable optimizations to the algorithm reduce both

memory requirements and computational cost.

The diagonalization procedure sketched in Sec. 2.2 can be extended to the case of

Hermitian matrices using the complex diagonalization routines provided by the standard

linear algebra library Lapack [28]. The diagonalization is applied separately to the ↑ and

↓ spin KS problems and it yields a double set of eigenvectors {φi(r,k↑)} and {φi(r,k↓)}
which are molecular orbitals. The DFT single determinant wavefunction is now compactly

expressed as:

ΨSD(r1, · · · , rN) = det[φi(rj,k↑)] det[φi(rj,k↓)], (4.15)

where i ∈ [1, Ntot/2] and j ∈ [1, N/2]. Eq. 4.15 can be used as initial guess for QMC

periodic calculations after building the proper interface.

4.2.5 Numerical Brillouin zone integration

The continuous integral in Eq. 4.4 for evaluating thermodynamically converged observ-

ables in DFT is approximated with a summation over a finite number Nk of k-points.

A special case of Eq. 4.4 is the evaluation of the total DFT energy for the infinite

crystal. The way this quantity is practically evaluated deserves better attention since it

will be crucial for understanding the special twist method for reducing finite-size effects

introduced in the next Chapter. In the standard DFT framework, the total KS energy

reads:

E∞[ρ∞] =
∑

σ

Nk∑

j=1

wj
∑

n∈occ

〈

φn(r,kσj )
∣
∣
∣ ĤKS[ρ∞]

∣
∣
∣φn(r,kσj )

〉

=

=
∑

σ

Nk∑

j=1

wj
∑

n

Fβ(Ekσ
j

n [ρ∞]− µ∞) Ekσ
j

n [ρ∞]. (4.16)

where the index n goes over occupied electronic bands and the function Fβ is defined later

on (Eq. 4.18). . The electronic density ρ∞(r) of the infinite crystal is defined in a similar

fashion:

ρ∞(r) =
∑

σ

Nk∑

j=1

wj
∑

n

Fβ(Ekσ
j

n [ρ∞]− µ∞) |φn(r,kσj )|2. (4.17)

Eqs. 4.16 and 4.17 contain several crucial tricks required for accurate evaluation of

crystal properties which have subtle physical implications. These features of the DFT

code have been implemented in the TurboRVB package during this thesis.
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First of all, one can considerably improve the accuracy of the approximation in Eq. 4.16

whilst keeping, at the same time, an affordable number of k-points, by choosing an uni-

formly spaced grid in the 1BZ following the well-known Monkhorst-Pack method [142].

To each grid point it can be assigned an appropriate weight wi determined by exploiting

the point group symmetries of the Bravais lattice associated with the simulation box. In

order for the averaged electronic density to fulfill the right crystal symmetries, this quan-

tity must be symmetrized after each self-consistent cycle by summing over the stars of

equivalent lattice vectors; in this case, shifting the origin of the grid can be harmful since

it might break the underlying crystal symmetries thus hindering a correct symmetriza-

tion. We do not impose any shift to the real mesh in the case of the weighted k-points

summation.

Secondly, the occupation of each band is computed using the smearing function Fβ

which, in our implementation, we take with Fermi-Dirac form:

Fβ(E − µ∞) =
1

1 + eβ(E−µ∞)
. (4.18)

β is the smearing parameter which determines the steepness of Fβ and which is equivalent

to the application of a fictitious temperature to the electronic degrees of freedom in the

system. The smearing is crucial for the convergence of the summation in Eqs. 5.9,4.17

in the case of metallic systems possessing discontinuous electronic occupations around

the Fermi energy. Notice that the effect of the electronic temperature is to introduce

fractional electron occupations for each boundary. It is thus clear that this method works

within the grand canonical ensemble. The variable number of particles per each boundary

is set by the chemical potential µ∞ updated at each self-consistent cycle. Notice that at

zero temperature µ∞ coincides with the single-particle Fermi energy ǫF .

We present in Fig. 4.1 a benchmark k-point energy convergence on the lithium bcc

phase with our implementation and we compare it to the Quantum ESPRESSO [18]

software, which uses a plane wave basis set, and to the Crystal [25] program, which

employs the same Gaussian basis set as ours, but with an analytical procedure for the

evaluation of two-electron integrals. As expected, the three methods display a similar

efficiency in converging to the E∞[ρ∞]. This confirms the quality of our k-point sampling

implementation.

In conclusion, it is worth mentioning that the KS problem can be solved independently

for each value of k. This feature naturally leads to build an additional level of parallelism

on top of the splitting on the x direction of the integration mesh (see Sec. 2.2.2). To

this purpose, we exploit the features of the message passage interface (MPI) library for

parallel calculations to create a two dimensional grid of processors where each row deals

with a single k-point and the results are then averaged over columns, i.e. k-points, at
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Figure 4.1 – Benchmark calculations on our implementation of DFT within a localized basis set. We
show the convergence with the number of k-points used to integrate over the 1BZ of the bcc structure
of lithium. We use uniformly spaced grid of points [142] for sampling the 1BZ. On the x axis the total
number of k-points in the grid is reported whereas on the y axis we show the total energy difference
in Ha between the chosen grid and the thermodynamic limit calculated with a 20× 20 × 20 mesh. We
compare our DFT software with two widely used codes (Quantum ESPRESSO [18] and Crystal [25])
implementing different DFT frameworks.
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the end of each DFT cycle, for evaluating Eqs. 4.16 and 4.17. The basic algorithm for

creating the two dimensional grid of processors is presented in Appendix B. The same

parallel scheme is also applied to QMC calculations on periodic systems which is the topic

of the next section.

4.3 Periodic systems with QMC

4.3.1 Many-body Hamiltonian in supercell calculations

Correlated wavefunction methods such as QMC explicitly treat the full quantum many-

body problem through the ansatz ΨT (r1, · · · , rN). The full Coulomb electron-electron

interaction in a solid is long-ranged and non-periodic. In the following we denote as LP

the lattice vectors defined in the primitive cell. By defining the many-body Hamiltonian

within a single PC, the non-periodic Coulomb interaction breaks the following symmetry:

Ĥ(r1, . . . , ri + LP , . . . , rN) = Ĥ(r1, · · · , rN), (4.19)
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which is instead valid for the effective single-particle Hamiltonian (Eq. 4.1). The sole

invariance left is the simultaneous translation of all electrons of a primitive lattice vector:

Ĥ(r1 + LP , . . . , ri + LP , . . . , rN + LP ) = Ĥ(r1, · · · , rN). (4.20)

Eq. 4.20 is a direct consequence of the periodic nature of the total electron-ion potential.

However, this condition is not sufficient to describe the infinite crystal using a single

PC. In explicitly correlated calculation one is forced to extend the simulation cell to a

larger box, usually called supercell (SC). Notice that SCs are extensively used also in

independent electron methods in order to study non-periodic structure or solids with

defects. In correlated calculations, supercells are unavoidable in order to capture the

long-range decay of correlation functions and of the Coulomb potential itself.

We denote as LS the SC lattice vectors and as NS > N the number of electrons in

the SC. The SC is typically chosen as nx × ny × nz integer multiple of the primitive

cell. In this way the supercell lattice is compatible with the translational symmetries

given by the primitive cell lattice spanned by the vectors LP since {LS} ⊂ {LP}. As for

the primitive cell case, periodic images are generated by subjecting the SC to periodic

boundary conditions and the Ewald summation formalism can be exploited for curing

the divergent 1/r series of the Coulomb potential. The many-body wavefunction of a

nx × ny × nz supercell corresponds to a set of single-particle wavefunction defined on

a nx × ny × nz grid of k-points in the 1BZ of the primitive cell. Fig. 4.2a shows a

representation of a k-point mesh corresponding to a 4× 4 supercell within the Brillouin

zone of a 2D square lattice.

The electron many-body Hamiltonian (Eq. 2.2) within a supercell can be rewritten as

follows:

Ĥ = −1
2

N∑

i=1

∆ri
+

1
2

∑

LS

N∑

i<j

1
|ri − rj − LS |

−
∑

LS

Nat∑

a=1

N∑

i=1

Z

|ri −Ra − LS|
(4.21)

where the summation
∑

LS
goes over all the lattice vectors of the supercell.

4.3.2 Twisted boundary conditions

It is simple to generalize the single particle Bloch theorem to the many-body eigenstates

of the Hamiltonian in Eq. 4.21 [143, 144]. In fact, the SC approach introduces an artificial

translational symmetry in Ĥ given by:

H(r1, . . . , ri + LS, . . . , rNS
) = H(r1, · · · , rNS

) ∀ i ∈ [1, NS]. (4.22)

Consider now a many-body wavefunction Ψ(r1, · · · , rNS
), assumed to be an eigenstate

of Ĥ. If one picks an arbitrary couple of electrons identified by the positions ri and ri+1
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and displaces the first particle by a SC lattice vector, the one-particle Bloch theorem must

hold:

Ψ(r1, . . . , ri + LS, . . . , rNS
) = eiθi·LSΨ(r1, · · · , rNS

) (4.23)

where we use the symbol θ in order to distinguish from the single-particle boundary k.

One can apply the same shift to the second electron as:

Ψ(r1, . . . , ri, ri+1 + LS, . . . , rNS
) = eiθi+1·LSΨ(r1, · · · , rNS

) (4.24)

where for now θi 6= θi+1. In Eq. 4.24 we can exchange the two electrons; using the

antisymmetric property of Ψ one obtains:

Ψ(r1, . . . , ri+1 + LS, ri, . . . , rNS
) = −eiθi+1·LSΨ(r1, · · · , rNS

) (4.25)

By applying the transformation: ri+1 → ri+1−LS and exchanging again the two particles,

one retrieves the following identity:

Ψ(r1, . . . , rNS
) = ei(θi+1−θi)·LSΨ(r1, · · · , rNS

) (4.26)

Eq. 4.26 holds only if θi+1 − θi ∈ GS, where {GS} are the supercell reciprocal lattice

vectors. This follows directly from the definition of the reciprocal lattice: eiGS ·LS = 1 holds

for all lattice vectors. Since we applied PBC to the supercell, the supercell wavevector θ

remains unchanged if translated within the SC reciprocal lattice. θi can be reduced into

the 1BZ of the supercell and we can set θi = θi+1 without loss of generality. The electron

couple has been arbitrarily chosen at the beginning of this derivation, therefore the phase

of the wavefunction must be the same for any electron.

In conclusion, we can formulate the many-body Bloch theorem with two equivalent

relations, which generalize Eqs. 4.2 and 4.3. When any electron wraps around the SC

boundaries it picks the same phase factor θ:

Ψ(r1, . . . , ri + LS, . . . , rNS
) = eiθ·LSΨ(r1, · · · , rNS

) ∀ i ∈ [1, NS]. (4.27)

This is equivalent to requiring Ψ to possess the following functional form:

Ψθ(r1, · · · , rNS
) = Wθ(r1, · · · , rNS

) exp



iθ ·
NS∑

i=1

ri



 (4.28)

where the function W is periodic on the SC lattice.

The wavevector θ is usually called twist condition and it is an extension of the concept

of k-point introduced for mean-field theories. In Fig. 4.2 we present a graphical visual-

ization of the action of a twist condition on the primitive cell BZ. The contour plot is a

generic Fermi surface slice. On the left panel we show the k-points in the primitive BZ
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Figure 4.2 – Graphical visualization on the difference between supercell twist and k-point in the first
BZ of the primitive cell. In the left panel we represent the k-points mesh in the first BZ of the primitive
cell associated with a 4 × 4 supercell. In the right panel, the action of a twist condition as an offset to
this grid is shown. An integration over the whole set of k-points allowed in the first BZ is equivalent to
integrate over all twist conditions allowed in the supercell reciprocal lattice.

corresponding to the supercell wavefunction. When a twist θ is applied (right panel), an

offset proportional to the twist components along the Cartesian directions is applied to

this grid which now explores different points in the first BZ. From Fig. 4.2 it is evident that

the BZ integration for single particle systems is equivalent, in a many-body framework,

to an integration over all the twist conditions allowed in the SC Brillouin zone. As in the

independent particle case, the discrete set of allowed values is determined by the PBC

imposed on the supercell. Therefore, an accurate determination of the properties of the

infinite crystal within QMC usually requires us to perform calculations with wavevectors

θ different from zero.

As in the DFT case, the main computational difficult arising from a generic θ is that

the wavefunction must be complex-valued. Complex arithmetic can be avoided only for

twist values which correspond to a k-point mesh with inversion symmetry, such as θ = 0

or θ = (1
2
, 1

2
, 1

2
). However, as we will see in the next Chapter, such twist conditions are

usually not sufficient to obtain thermodynamically converged properties within QMC.

The last two sections of this Chapter are devoted to the generalization of the main QMC

algorithms introduced in Chap. 2 to the complex formalism.
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4.3.3 Complex JAGP ansatz

Using the single-particle orbitals defined in Eq. 4.9, we can rewrite the electron pairing

function for extended systems. In the valence bond representation for a spin unpolarized

system – introduced for open systems in Eq. 2.28 – this quantity reads:

Φ(r↑, r′↓) =
Nat∑

a,b

Nbas∑

µ,ν

λa,bµ,ν X
a
µ(r, θ↑) Xb

ν(r
′, θ↓). (4.29)

The way single-particle orbitals are defined allows us to impose a generic twist condition

for ↑ and ↓ spin electrons in the determinantal part. In contrast to the open systems

case, the matrix Λ = {λa,bµ,ν} now has complex-valued elements. In the alternative MOs

representation (see Eq. 2.29), we expand the geminal as:

Φ(r↑, r′↓) =
NMO∑

j

λMO
j φMO

j (r↑)φMO
j (r′↓). (4.30)

In Eq. 4.30, both the eigenvalues λMO
j - obtained through the diagonalization of the Λ

geminal matrix - as well as the coefficients Cσ = {cσji} - defining the MO expansion over

the localized basis set - are phase dependent.

without loss of generality we can impose the coefficients λMO
j independently of the

chosen twist condition. On the contrary, the coefficients Cσ = {cσji} defining the MOs

expansion over the localized basis set are phase dependent.

When using the generic twist condition framework previously introduced, particular

care must be taken when passing from the VB to the MOs representation. Indeed, since

unlike spin particles are no longer equivalent, in this situation the Λ matrix diagonalization

procedure must be generalized as is usually done in the case of spin polarized systems [37].

We extend the geminal matrix by constructing a 2Ntot × 2Ntot matrix Λ̃ defined as:

Λ̃ =




0 Λ

Λ† 0



 (4.31)

where Λ† is the Hermitian conjugate of Λ. The basis set overlap matrix, since the basis

orbitals are different between the two spin sectors, must also be extended, with the same

dimension, as follows:

S̃ =




S↑ 0

0 S↓



 (4.32)

where the matrix Sσ has been defined in Eq. 4.14. The complex MO coefficients and

eigenvalues λMO
j are obtained by solving the generalized eigenvalue problem associated

with Λ̃ which corresponds to the following set of secular equations:






S↑ΛS↓C↓ = λMO
j S↑C↑

S↓Λ†S↑C↑ = λMO
j S↓C↓

(4.33)
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Notice that Eqs. 4.33 couple the two spin sectors, thus they must be solved at the same

time by means of an algorithm similar to the one used for the KS Hamiltonian diago-

nalization. All the properties of the AGP wavefunction established for open systems are

valid also in the case of solid calculations. The starting N/2 molecular orbitals are taken

from the DFT(LDA) wavefunction in Eq. 4.15.

The Jastrow factor is only constructed by means of density-density correlators. Since

the electronic density is an intrinsically phase independent quantity, due to its periodicity

over the atomic lattice, in the case of periodic systems the Jastrow factor can be chosen

twist-independent and therefore real-valued as in the case of atoms and molecules. Notice

that this quantity is defined on the same periodic box as the determinant, therefore it

must satisfy periodic boundary conditions when a particle wraps around cell boundaries.

In order to fulfill this condition, we expand the short-range part of the Jastrow factor

(Eqs. 2.33 and 2.35) over a set of localized orbitals with the usual functional form as for

open systems. However, in our current implementation periodic boundary conditions are

enforced on these one-particle functions by using the coordinate transformation on the

electron-ion distances defined in Eq. 4.6. We plan to extend also the Jastrow basis set to

the functional form defined in Eq. 4.9.

4.4 Single-point QMC calculations with complex wave-

functions

In this Section we present the variational and diffusion Monte Carlo algorithms suitably

modified to handle complex-valued wavefunctions. The evolution of the VMC algorithm

is straightforward. The DMC case is instead more delicate since the standard fixed-node

approximation introduced in Eq. 2.50 cannot be applied and must be reformulated to

cope with complex trial and guiding wavefunctions.

4.4.1 Variational Monte Carlo

The Hamiltonian expectation value introduced in Eq. 2.42 is modified as follows:

EVMC =
∫

dRelΨ∗
T (Rel)ĤΨT (Rel)

∫

dRel|ΨT (Rel)|2
, (4.34)

where the local energy eL(Rel) = ĤΨT/ΨT is now a complex-valued function of the

electronic positions. The importance sampling transformation for the efficient evaluation

of Eq. 4.34 is analogous to the real case and the Markov chain generation process remains
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the same. The only relevant difference is that the computational cost of the algorithm is

approximately 2/2.5 times the real case due to the need of complex arithmetic.

Unlike the local energy, the Hamiltonian expectation value and any other physical ob-

servables 〈Ô〉 extracted from the QMC simulation are real quantities. The VMC operator

estimator must be modified accordingly:

ÔVMC = 〈ÔL〉 =
1
M

M∑

i=1

Re[ÔL(Ri
el)]. (4.35)

where M is the number of MC generation on a single block of stochastic measurements

and ÔL(Rel) = ĤΨT/ΨT is the local version of the operator. We evaluate the block

variance in the following way:

σ2[〈ÔL〉] =
1

M − 1

M∑

i=1

[

ÔL(Ri
el)− 〈ÔL〉

]∗ [

ÔL(Ri
el)− 〈ÔL〉

]

=
1

M − 1

M∑

i=1

[

ÔL(Ri
el) Ô

∗
L(Ri

el)− 〈ÔL〉2
]

. (4.36)

Block averaging and the bootstrap technique b are then used to decrease the serial corre-

lation among the MC measurements.

A particular attention must be paid when multiple twist conditions are included in

the simulation. Twist calculations are uncorrelated, so we can compute the expectation

value by a simple arithmetic average at the end of the simulation with no need of block

regrouping:

〈ÔL〉 =
1
Nt

Nt∑

i=1

〈Ôθi

L 〉 (4.37)

where Nt is the number of twists and 〈Ôθ

L〉 =
∫
dRelΨ

∗
T

(Rel,θ)ÔΨT (Rel,θ)
∫
dRel|ΨT (Rel,θ)|2

is the operator

expectation value for a single twist evaluated in the standard way. We can write the

variance on a multiple twist calculation as:

σ2[〈ÔL〉] =
1
Nt

(

1
Nt − 1

Nt∑

i=1

σ2[〈Ôθi

L 〉]
)

≃ 1
N2
t

Nt∑

i=1

σ2[〈Ôθi

L 〉] (4.38)

where σ2[〈Ôθ

L〉] is the single twist variance (Eq. 4.36) and we used the usual expression

for the unbiased estimator of the variance. Notice that with this definition, if ideally

the wavefunction is exact for each twist, the variance goes to zero and the zero-variance

bBoostrap resampling is a statistical method which consists in resampling the obtained data by fol-
lowing the empirical distribution of the data themselves or, in other words, constructing a number of
resamples with replacement of the observed statistical data and then recover the desired average value
from them.
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property is maintained as expected. It is important to remark that multiple twists do not

necessarily lead to a lower efficiency of the algorithm with respect to the single twist cal-

culation as twists are uncorrelated. In fact, the statistics for each boundary condition can

be accumulated and, keeping the same number of MC samples, the statistical noise when

passing from a calculation with a single twist condition to one including Nt boundaries is

reduced according to:

σ[〈ÔL〉]→
1

√

(Nt)
σ[〈ÔL〉], (4.39)

which directly derives from Eq. 4.38. As we will see later on, this feature is particularly

relevant to achieve efficient wavefunction optimization with multiple twists (Sec. 4.5),

as well as to effectively reduce finite size errors by averaging over different boundary

conditions (Sec. 5.3).

4.4.2 Fixed-phase diffusion Monte Carlo

A diffusion Monte Carlo algorithm able to handle complex-valued wavefunctions allows the

treatment of systems where time-reversal symmetry is broken. This feature is needed in

many physical situations not only because it enables the application of generic boundary

conditions to the wavefunction, but also since it opens the way to treat Hamiltonians

containing external magnetic fields within an accurate correlated technique as DMC.

A complex trial wavefunction hinders a probabilistic interpretation of the important

sampling transformation f(Rel, t) (Eqs. 2.49, 2.50). A simple but effective workaround,

known as the fixed phase approximation, was introduced in Refs. [145, 146] in the context

of the 2D electron gas under an external magnetic field. For complex-valued trial and

guiding wavefunctions, we can rewrite the importance sampling transformation in the

following way:

f(Rel, t) = Ψ∗
G(Rel, t)ΨT (Rel),

= |ΨG(Rel, t)| |ΨT (Rel)|ei(φT (Rel)−φG(Rel,t)), (4.40)

where φT (φG) is the phase of the trial (guiding) wavefunction.

The simplest way to retrieve a real-valued distribution from the above definition is

to fix the phase of the guiding wavefunction during the imaginary time evolution to be

equal to the one of the initial ansatz ΨT . This yields the following relation, usually called

fixed-phase approximation:

φG(Rel, t) = φT (Rel) ∀ Rel and t (4.41)

By enforcing the above condition in Eq. 4.40, we immediately notice that the resulting
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importance sampled distribution:

f̃(Rel, t) = |ΨG(Rel, t)| |ΨT (Rel)|, (4.42)

is real-valued and positive definite, since it is defined as a product of the wavefunction

moduli. The FP constraint is thus analogous to the FN approximation (Eq. 2.50), where

the role of the nodal surface of ΨT is substituted by the 3N-dimension phase function

φT (Rel). It can be easiliy demonstrated that within the FP approximation the variational

character of the fixed-node approximation - a special case of the FP approximation when

a real trial wavefunction is used - is maintained.

The FP constraint is very convenient since the time-dependent Schrödinger equation

for f̃(Rel, t) (Eq. 2.51) is only slightly modified with respect to its real-valued counterpart.

In fact, only the drift term shows a phase dependency:

∇Rel
ln ΨT (Rel) = ∇Rel

ln
[

|ΨT (Rel)|eiφT (Rel)
]

=

= ∇Rel
ln |ΨT (Rel)|+∇Rel

ln eiφT (Rel) =

= ∇Rel
ln |ΨT (Rel)|

︸ ︷︷ ︸

standard drift term

+i∇Rel
φT (Rel). (4.43)

When performing the mixed average with the real function f̃(Rel, t) within the FP con-

straint, the expectation value of the purely imaginary term in the right-hand-side of

Eq. 4.43 gives a vanishing contribution. Hence the master equation associated with

f̃(Rel, t) can be solved using the very same algorithm outlined in Sec. 2.4.2 for the real

case. The lattice regularization of the Hamiltonian is also maintained for introducing

non-local pseudopotentials. As usual, the FP algorithm has a cost which is ∼ 2/2.5 that

of its real-valued counterpart due to the need for complex arithmetic. The FP approach

outlined in this Section has been implemented in the TurboRVB package during this the-

sis. The FP method can be generalized when a vector potential A is included in the

Hamiltonian for modeling the action of a magnetic field. This extension is discussed in

Ref. [145], but has not been implemented here.

An evolution of the FP algorithm has been introduced by Ref. [147] under the name

release-phase diffusion Monte Carlo. This method relaxes the FP constraint by allowing

the phase of ΨG to evolve during the drift-diffusion process until branching occurs; at

this stage the total phase is accumulated among all walkers and the walker weights are

updated accordingly. The high computational cost of this method has limited – to our

knowledge – its application to isolated atoms and as a benchmark for the simpler FP

approximation [147, 148].
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4.5 Wavefunction optimization with periodic systems

In standard QMC calculations on periodic systems, the determinantal part is kept fixed at

the DFT level (Eq. 4.15) whereas only the Jastrow factor is optimized. The supposedly

weak dependence of the DMC method on the trial ΨT makes this procedure typically

sufficient to attain the desired accuracy and this is the methodology followed by most

part of QMC codes available on the market. Furthermore, this scheme is convenient since

the Jastrow factor is a twist independent quantity which can thus be chosen equal for

all boundaries. It is evident that if one considers several uncorrelated twist conditions

in the same simulation (for example for reducing systematic finite size effects with the

methods explained in Secs. 5.3 and 5.7) the statistical noise on the minimization procedure

is effectively reduced by averaging over the twists at every optimization step or for each

twist separately at the end of the simulation (see Eq. 4.38).

The determinantal part is instead a θ-dependent quantity and its full QMC minimiza-

tion would require, in principle, separate calculations for each twist. On the other hand,

an accurate orbital optimization allows one to greatly reduce the size of the atomic basis

set with a negligible loss in accuracy. Moreover, this possibility opens the way, using

our JAGP wavefunction, to extract QMC electron pairing functions resolved in reciprocal

space. This offers invaluable information for investigating, for example, the mechanism

of high-temperature superconductivity, as demonstrated in Ref. [149] and discussed more

in detail in Chap. 6.

In this Section we aim at extending the wavefunction optimization tools we introduced

in Chap. 2 to the case of periodic systems. At first in Sec. 4.5.1 we briefly discuss the

evolution of the SR method to the case of complex variational parameters. Afterwards, in

Sec. 4.5.2, we introduce an original parameterization of the pairing function which brings

a solution to the problem of determinant optimization in the presence of several twist

conditions.

4.5.1 Stochastic reconfiguration with complex wavefunction

In Sec. 2.5 we introduced the stochastic reconfiguration algorithm in the context of real

wavefunction optimization. The trial wavefunction ΨT (α) is parameterized with a set of

now complex variational parameters {α}. We can write a collective variation of these

parameters as:

α + δα = (αRe + δαRe) + i(αIm + δαIm). (4.44)

When performing the linear expansion around the parameter variations introduced in

Eq. 2.64, we can decouple the resulting problem into two real-valued equations for the
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real and imaginary parts of the variational parameters. We then apply the same algorithm

developed in Sec. 2.5.1 for the molecular system case. This gives rise to a couple of real-

valued equations for the real and imaginary parts of the variational parameters, which are

solved using the standard SR algorithm In our implementation, we promoted to complex

the variational parameters in the determinant, namely the Λ geminal matrix and the

coefficients of the atomic or GEO contractions.

The derivatives necessary for the SR complex algorithm are computed via algorithmic

differentiation, introduced in Sec. 2.5.3. The adjoints of the two most important algebraic

operations extended to complex-valued matrices are presented in Appendix C.

Since the complex pairing function in Eq. 4.29 is an analytical function of the variational

parameters {λa,bµ,ν}, we can make use of the well known Cauchy-Riemann relations. They

link the derivatives of the real and imaginary parts of an analytic function Φ = ΦR +

iΦI with respect to the real and imaginary part of a generic complex-valued variational

parameter λ = λR + iλI:
∂ΦR

∂λR
=
∂ΦI

∂λI

∂ΦR

∂λI
= −∂ΦI

∂λR

(4.45)

Eqs. 4.45 allows to avoid the computation of the derivatives of the imaginary part of

the pairing function, thus leading to a considerable reduction (factor ∼ 2) in the final

computational cost of some parts of the complex algorithm.

4.5.2 Twist independent parameterization of the pairing func-

tion

For the following discussion, we consider the electron pairing function introduced in

Eq. 4.29. In order to simplify the notation, we denote as λRa,Rb the geminal matrix

elements connecting atoms Ra and Rb for all atomic basis set components. Analogously,

XRa
σ refers to all basis set elements localized on the atom Ra for particles with spin σ,

defined in Eq. 4.9.

The pairing function of a quantum system is intimately connected with its density

matrix (see Eq. A.2), which is a physical observable. It is therefore natural to impose its

variational parameters {λa,bµ,ν} invariant under any a supercell lattice vector translation:

λR+Lm,R′+Ln XR+Lm

↑ XR′+Ln

↓ = λR,R′

XR
↑ X

R′

↓ . (4.46)

Eq. 4.46 is valid for any pair of atoms (R,R′) in the simulation supercell.

In parallel, it follows from Eq. 4.12 that, when the atomic coordinates are translated
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on the supercell lattice, the following transformation also holds:

λR+Lm,R′+Ln XR+Lm

↑ XR′+Ln

↓ = e−i[θ↑·Lm+θ
↓·Ln]λR+Lm,R′+Ln XR

↑ X
R′

↓ . (4.47)

If we combine Eqs. 4.46 and 4.47, we obtain the following transformation for the Λ

matrix elements:

λR+Lm,R′+Ln = ei[θ↑·Lm+θ
↓·Ln]λR,R′

, (4.48)

which must hold for any pair of supercell translational vectors (Lm,Ln). Eq. 4.48 provides

a consistent definition of the pairing function matrix on the supercell lattice. Indeed, if this

condition is verified, one can take an arbitrary pair of atomic positions (R + Lm,R′ + Ln)

on the supercell lattice equivalent to the original ones (R,R′) for periodic boundary

conditions, and obtain the same pairing function up to a phase factor. The supercell

translation operations are compatible with the primitive cell ones, since the supercell is

usually chosen as integer multiple of the primitive cell. This implies that Eq. 4.48 must

be always satisfied for the real pairing function of the crystal and not only within the

supercell.

In the special case of Lm = Ln, i.e. when translating the couple of atoms into another

equivalent supercell, it directly follows from Eq. 4.48 that the translational invariance of

the geminal function is respected if one chooses the twist conditions as:

θ↓ = −θ
↑, (4.49)

which means that down spin particles have opposite phase with respect to up spin ones.

This relation highlights the importance of having a general boundary condition framework

as introduced already within DFT (Sec. 4.2).

Considering θ↓ = −θ
↑, we can rewrite the condition of Eq. 4.48 as:

λR+Lm,R′+Ln = eiθ
↑·(Lm−Ln)λR,R′

= eiθ
↑·LlλR,R′

, (4.50)

where Ll = Lm − Ln is a vector which still belongs to the supercell lattice. For each pair

of atomic positions R,R′ on the lattice it is thus possible to find a suitable value of Ll

such that |R −R′| is mapped into a reference supercell as follows:

|R −R′ + Ll(R,R′)| ≤ Li
2

for i ∈ (x, y, z). (4.51)

Eq. 4.51 ensures that any couple of atoms (R,R′) are always translated within, at most,

nearest neighbor supercell images of the chosen reference. This is achieved thanks to

an appropriately chosen translational vector Ll(R,R′) which actually depends on the

considered pair of atoms. Ll(R,R′) indirectly depends also on the electronic positions.

In fact, in the valence bond picture, they can change the connections between atoms by
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breaking and forming valence bonds connecting different R,R′ atoms with respect to the

previous configuration. Therefore the translational vector Ll(R,R′) must be recomputed

after each single electron move.

If one enforces the parameterization of Eq. 4.51 on a generic phase-dependent pairing

function (Eq. 4.48), the result is an effective geminal matrix which is independent of the

chosen boundary condition. This key outcome derives from the fact that periodic nearest

neighbor images do not have any gauge-dependent phase attached by definition and they

are therefore purely translational invariant quantities.

Table 4.2 – Benchmark calculations on the solid bcc phase of hydrogen. We used a 64 atoms supercell
and 8 twist conditions. The wavefunction Ψ is computed by separate optimization of each twist, while
the wavefunction Ψ̃ is extracted from a calculation including all twist with the procedure explained in
the text. Total energy difference EΨ − EΨ̃ in Ha, the overlap 〈Ψ|Ψ̃〉 and the corresponding statistical
errors δ(EΨ − EΨ̃) and δ

[
〈Ψ|Ψ̃〉

]
have been computed using the correlated sampling technique. For all

twists, the VMC total energy difference given by the two wavefunctions is lower than 2 mHa.

θ EΨ −EΨ̃ δ(EΨ − EΨ̃) 〈Ψ|Ψ̃〉 δ
[

〈Ψ|Ψ̃〉
]

1 -0.00063 0.00024 0.98688 0.00012

2 -0.00096 0.00026 0.98509 0.00016

3 -0.00194 0.00030 0.98457 0.00016

4 -0.00162 0.00041 0.98260 0.00017

5 -0.00220 0.00040 0.98296 0.00034

6 -0.00154 0.00027 0.98514 0.00023

7 -0.00104 0.00044 0.98732 0.00022

8 -0.00099 0.00045 0.98787 0.00018

Using Eqs. 4.50 and 4.51 we can define a set of effective variational parameters for the

pairing function as:

λR,R′

eff = λR+Lm(R,R′),R′

. (4.52)

The derivatives required by the SR optimization procedure (Eq. 2.65) can be now written

as a function of {λR,R′

eff } by applying the chain rule:

∂ΨT (Rel)

∂λR,R′

eff

=
∂ΨT (Rel)
∂λR,R′

∂λR,R′

∂λR,R′

eff

=

=
∂ΨT (Rel)
∂λR,R′ eiθ

↑·Lm (4.53)

The left-hand-side of Eq. 4.53 is by definition a phase independent quantity. Therefore

its computation strongly benefits from the statistics accumulated for each twist condition;
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the statistical error on its evaluation is effectively reduced in this way, exactly as for the

Jastrow variational parameters.

This leads to an optimized SR reconfiguration algorithm for dealing with single or

multiple twist conditions with the same efficiency. As before, by including the atomic

positions as variational parameters, this algorithm can be extended also to geometry

relaxation. The main steps of the procedure are:

• The phase independent derivatives are constructed by attaching an appropriately

chosen phase factor eiθ
↑·Lm to the original derivatives for each twist condition.

• One step of the SR algorithm, modified for complex-valued pairing functions, is

applied using the derivatives ∂ΨT (Rel)

∂λR,R′

eff

. The statistical noise is effectively decreased

by accumulating statistics per each boundary condition.

• The new optimized parameters for each twist condition are obtained by simply

inverting Eq. 4.53. Now we can construct a new pairing function with the definition

in Eq. 4.29 and perform the next SR step.

This algorithm is immediately applicable to the single determinant wavefunction by cast-

ing Eq. 4.29 in the MO representation and truncating the expansion to the first N/2

molecular orbitals.

We tested the efficiency of this effective parameterization by performing benchmark

calculations on 64 atoms supercell of bcc hydrogen. We consider 8 twist conditions. We

start from a previously optimized Jastrow factor and from the DFT(LDA) determinant

for all twists. The primitive basis set used is J [1s1p]D[2s] where D stands for determinant

and J for the Jastrow factor.

We optimized the determinant orbitals for each twist condition separately (8 calcula-

tions) and also, using the same statistics, all boundary conditions together (single cal-

culation) employing the phase-independent parameterization outlined in this Section. In

Tab. 4.2, we present for each twist condition the VMC energy difference and the overlap

between the wavefunctions Ψ and Ψ̃ obtained with the first and second methods respec-

tively. The efficiency of our technique is apparent since the difference in the total VMC

energy is lower than 2 mHa for all twists.

In conclusion to this Section it is worth mentioning some limitations of our parame-

terization. This method is not applicable in the presence of spin polarized systems with

N↑ 6= N↓. The unpaired electrons breaks the crystal lattice symmetries and it is evident

that the basic geminal transformation derived in Eq. 4.48 is no longer valid. For similar

reasons the gauge independent parameterization we proposed cannot be directly used if

the electron pairing is described with the more complicated Pfaffian functional form [39].
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The Pfaffian naturally accommodates a triplet state with an unpaired electron, thus it

hampers us again from exploiting crystal lattice symmetries to derive Eq. 4.48. As we

shall see in Chap. 6, the use of a Pfaffian can be crucial to properly account for spin fluc-

tuations in the context of high temperature superconductivity, thus further investigations

are required to overcome this inconvenience of the approach here outlined.

4.6 Conclusions

In this Chapter we presented the theoretical background and practical implementations

of our QMC framework to the study of periodic solids.

We showed how to extend the single-particle localized orbitals to the case of periodic

systems by testing a couple of distinct functional forms fulfilling the well-known Bloch

theorem of one-electron functions. Furthermore, we implemented a generic boundary

conditions framework which allows to apply a different boundary condition to ↑ and ↓
spin particles, a feature which turns out to be of paramount importance for efficient

wavefunction optimization within QMC.

These schemes are extended to the case of QMC calculations. Due to the long-range

Coulomb interaction, QMC calculations must be performed within supercells composed

of several primitive cells. We discussed how the Bloch theorem can be extended to this

situation and we defined the action of a phase factor (or twist condition) when applied to

the many-body wavefunction. This has to be distinguished from the similar concept of a

k-point in effective single-particle theories.

In the last two sections, we focused on the evolution of the QMC algorithms within the

TurboRVB code developed during this thesis work. We showed that the main complica-

tions arise from the need of a complex wavefunction to properly describe solid systems.

The VMC algorithm is straightforwardly extended to this case. The backbone LRDMC

algorithm can also be maintained with complex wavefunctions, but in order to project the

procedure to the real axis not the sign, but the phase of the guiding wavefunction must

be equal to the phase of the trial wavefunction.

Finally, we have presented the SR algorithm for wavefunction optimization as well

as an original scheme to obtain optimized determinants in the presence of several twist

conditions. By enforcing translational invariance with a proper choice of twist condition

for ↑ and ↓ spin particles, we were able to parameterize the pairing function, the main

building block of our ansatz, in a boundary independent way. This allows us to compute

the derivatives over the variational parameters in the determinant by accumulating the

statistics over all twist conditions included in the simulation, thus yielding the same

efficiency as a single-twist calculation.
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The theoretical and programming efforts presented in this Chapter allowed us to extend

the capabilities of the TurboRVB code towards an accurate treatment of periodic solids

and paved the way to the application of several techniques for reducing the systematic

error arising from the finite size of the simulation supercell. Novel methodologies for

curing these errors as well as several applications of the approaches presented here are

the subject of the next Chapter.



Chapter 5

Alternative approaches to reduce

finite size effects in QMC solid state

calculations

5.1 Introduction

The simulation of an infinite periodic crystal using a finite number of particles introduces

systematic errors into the results of the numerical experiment. These errors strongly

affect all observables which do not converge rapidly with the system size, among them

the total energy, structural parameters and correlation functions. Since in ab initio QMC

calculations the statistical error can be reduced down to the desired precision if enough

computer time is spent, finite size (FS) effects typically represent the most important

source of error for solid state calculations.

The ab initio determination of different phases in a crystalline material typically re-

quires the sub-chemical accuracy (< 0.01 eV/atom) in many-body solid state calculations.

This has been verified in a vast amount of solids ranging from the simple crystalline ben-

zene [150] to silicon [136] and polymorphic compounds [134]. FS errors are typically larger

than this energy difference and they therefore prevent a reliable application of QMC to

these problems. In addition to crystalline phases, magnetic phases can also be hard to dis-

tinguish without a proper treatment of FS effects; we will see an example in Chap. 6 where

we present a careful investigation of FS effects on the high-temperature superconductor

FeSe.

Effectively independent electron theories such as HF or DFT rely on the Bloch theorem

to reduce FS effects thanks to a suitable integration of the Brillouin zone. As we explained

in the previous Chapter, in principle this procedure allows to suppress all one-body FS

97
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errors. Within a correlated approach such as QMC, the FS problem is more involved. The

explicit presence of electron-electron correlation results in a classification of FS errors into

two main categories which are distinguished by their physical origin.

The first one derives from the single-particle terms in the quantum Hamiltonian and it

also appears within mean-field techniques. The one-body part of Ĥ is constituted by:

Ĥ1b = T̂ + V̂ext

where T̂ is the kinetic energy and V̂ext the external ionic potential. The latter is periodic

for a perfect crystal and thus does not contribute to FS errors. Errors instead come

mainly from fluctuations in the kinetic energy T̂ , as we will explain more in detail later

on in this Chapter.

The many-body part of Ĥ, namely the electron-electron interaction, constitutes a source

of erro peculiar to correlated methods. The electron-electron interaction can be always

decomposed as follows:

V̂ee = V̂Ha + V̂XC.

The Hartree term V̂Ha =
∫

dr′ ρ(r)
|r−r′|

only depends on the local electronic density ρ(r)

which is also a periodic quantity and rapidly convergent with the system size. Many-

body FS errors come from the exact non-local exchange correlation potential V̂XC whose

dependence on the simulation cell size cannot be known a priori. The standard procedure

for curing many-body FS effects consists in simulating the system at different supercell

sizes and extrapolating the energy to infinite size, i.e., to the thermodynamic limit. In 3

dimensions, the leading order of the error as a function of the system size is 1/N , while

in lower dimensional systems different powers are more appropriate [151].

However, in the largest supercell the many-body ansatz is typically more difficult to

optimize and the energy is not, in general, a simple analytic function of 1/N . Beyond-

leading-order corrections are necessary to alleviate this problem and improve the quality of

the extrapolation procedure [152]. Numerous schemes have been devised to this purpose.

Some of them are based on the random phase approximation (RPA) of the electronic

structure factor [153, 151, 152]. In fact, at small k values it can be substituted with

its RPA formulation to get a suitable correction applicable to finite-size systems. The

rational behind this choice is that in the high-density regime (small k values) the RPA

becomes exact. Another scheme is based on the generation of an ad-hoc density functional

which can account for many-body errors directly at a DFT level and provide a simple post-

processing correction to QMC energy data [154]. This is the procedure we used in this

work and it will be elucidated more in detail later on.

Finally, it is worth mentioning also that in supercell simulations subjected to PBC the

1/r term of the Coulomb potential must be substituted with a different interaction to
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obtain a convergent sum over periodic images. The model Coulomb potential (MPC)

introduced in Refs. [155, 156] has been found to produce results which converge more

rapidly with the system size with respect to the standard Ewald summations [157]. The

other side of the coin is that MPC introduces an undesired distortion in the exchange

correlation hole [151] which can affect the outcome of QMC simulations at small system

sizes.

In this Chapter, our focus is on single-particle errors related to the kinetic energy part

of the Hamiltonian. The other sources of FS effects are treated with standard methods

which are discussed. In the last Section we will introduce and test a method which utilizes

strategies similar to the one-body correction methods, but is designed to fully account

for both single-particle and many-body effects. This approach is called flavor twisted

boundary conditions (FTBC) and is particularly relevant since it has never been used

before in realistic calculations. The common thread of all error correcting techniques

presented in this Chapter is the use of twisted boundary conditions applied to the many-

body wavefunction (see Sec. 4.3.2 for the definition of twist).

5.1.1 Organization of the Chapter

The first part of this Chapter is devoted to the theoretical foundations of single-particle

error correcting methods. A detailed discussion on one-body shell effects is presented

in Sec. 5.2. In Sec. 5.3 we describe the mainstream correction methodologies based on

averaging over several twist conditions. In Sec. 5.4 an alternative method constructed

with special values of the twist condition in the supercell Brillouin zone is presented.

These special values are devised to reproduce the thermodynamically converged energy

at a mean-field level, thus yielding the correct independent particle limit of the many-

body wavefunction. We propose here an original procedure for extracting special twist

values with an adjustable numerical accuracy which we dub the exact special twist (EST)

method. We test it on the 3D homogeneous electron gas, the most important model for

metallic systems. In Sec. 5.6 we apply EST procedure to realistic simulations of metals.

We present benchmark calculations on both energy extrapolation within the VMC and

LRDMC methods, and, a special case of correlation functions, on ionic forces. We show

that our procedure is the best single-point solution to the one-body FS errors problem

and is competitive with twist averaging techniques at the cost of a single twist condition.

This is especially favorable for diffusion Monte Carlo calculations where most of the

simulation time is spent in equilibration of the initial walker configurations. The main

body of this Chapter concludes in Sec. 5.7, which is devoted to the flavor twist boundary

conditions method. This approach is applicable thanks to our generic boundary conditions
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implementation introduced in the previous Chapter. In fact, the application of FTBC

involves averaging over a set of twists distinct for ↑ and ↓ spin particles. We apply this

method to two paradigmatic metallic systems studied with the special twist method in

order to test its efficiency against the standard twist averaging technique. We conclude

this Chapter in Sec. 5.8.

5.2 Kinetic energy shell fluctuations

The simulation of a solid within a supercell subjected to PBC is equivalent to sampling

the primitive cell BZ with a grid of k-points whose spacing is inversely proportional to

the supercell dimension.

When increasing the supercell size in a correlated calculation in order to extrapolate to

infinite size, the underlined k-point mesh in the primitive BZ becomes denser. The Bloch

theorem states that the occupations of single-particle orbitals depend on the k vectors;

this leads to the formation of a Fermi surface for metallic systems. In that case the orbital

filling can change abruptly when varying the system size. Typically, this can be related to

a change from a closed-shell to an open-shell character and vice-versa. This discontinuous

change in orbital occupations gives raise to large fluctuations in the single-particle energy

operators, namely in the kinetic energy (KE) part of the many-body Hamiltonian and, to

a lesser extent, the one-body potential energy.

Due to their one-electron nature, these fluctuations are present already at the mean-

field level and they are thus related only to the determinantal part of the many-body

wavefunction. An alternative way of looking at the shell filling problem is to note that,

within a single-particle theory, the KE contribution to the energy per particle is given by:

T =
1
N

1
Nk

∑

k

N
occ(k)
bands∑

n=1

ǫn,k −
N∑

i=1

Veff(ri) (5.1)

where Nk is the number of boundary conditions used and ǫn,k are the electronic bands.

If we focus on the DFT framework, the effective single-particle potential Veff has been

defined in Eq. 2.10. In the infinite size limit, the summation over discrete single particle

levels is substituted by an integration as follows:

1
N

1
Nk

∑

k

N
occ(k)
bands

ǫn,k→ Ω
N

∫ ǫF

0
dE G(E) E,(5.2)

∑

n=1

where Ω is the primitive cell volume and ǫF is the Fermi energy and the density of states
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per unit volume G(E) is defined as:

G(E) =
1

(2π)3

N
occ(k)
bands

∫
dk δ(E−ǫn,k).(5.3)
∑

n=1

For metallic systems G(E) keeps a finite value when approaching the Fermi energy ǫF due

to the absence of gap, hence resulting in a sharp Fermi surface. This gives rise to large

and uncontrollable integration errors when replacing the exact density of states with a

simple summation over energy levels in the region close to ǫF . The shell filling effects on

the KE are thus related to an incorrect sampling of the Fermi surface of the simulated

material.

It is worth noting that additional FS errors on the KE arise from the long-range part

of the many-body wavefunction associated with the Jastrow factor. This issue can be

partially cured with the aforementioned RPA corrections [153], but its detailed discussion

is beyond the scope of this thesis.

Figure 5.1 – PBC energy at different supercell sizes in the 3D electron gas (panel a, taken from Ref. [158])
and in the hydrogen bcc structure (panel b). On the x axis we report the inverse of the number of particles
whereas the y axis shows the energy per particle in Ha. We notice in both cases a strongly fluctuating
behavior when approaching the infinite size limit. This is mainly due to the change in shell filling at
different simulation cell sizes.
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We conclude this Section by showing the impact of shell filling effects through a practical

example. In Fig. 5.1 we present energy versus 1/N curves on the 3D-HEG [158] (left
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panel) and on the bcc structure of hydrogen (right panel) obtained at the VMC level

with the Jastrow-single determinant wavefunction and without the application of any

twist condition. We notice that in both cases shell filling effects give rise to a highly

discontinuous behavior in the energy versus size curve. It is therefore impossible to

perform any kind of extrapolation to estimate the infinite size limit of the energy.

5.3 Twist averaging techniques

Shell fluctuations can be considerably reduced by averaging over several twisted boundary

conditions. The concept of twist has been introduced in Sec. 4.3.2; if we restrict, for

simplicity, to a cubic supercell of size L, the allowed twist conditions in units of 1/L,

when periodic boundary conditions are applied to the supercell, are comprised in the

following interval:

−π
L
≤ θi ≤

π

L
for i ∈ (x, y, z) (5.4)

The single-particle thermodynamic limit of an observable f defined on the crystal can

be obtained by integrating over the whole set of allowed twist conditions. Therefore, the

Brillouin zone summation defined in Eq. 4.4 for mean-field methods is equivalent to a

twist integration as follows:

Ω
(2π)3

∫

ΩP

dkf(k) ≡ 1
(2π)3

∫ π/L

−π/L
dθ f(θ), (5.5)

where f(θ) =
〈

Ψθ(Rel)
∣
∣
∣ f
∣
∣
∣Ψθ(Rel)

〉

and ΩP is the volume of the BZ corresponding to the

primitive cell.

The twist averaging technique for reducing single-particle FS effects was first introduced

in the study of lattice models [159, 160, 161]. Its most important implementation within

QMC is the standard twist-averaged boundary conditions (TABC) approach introduced

in Ref. [162], which is nowadays the method of choice for most published works using

QMC techniques.

In TABC the integral over twists in Eq. 5.5 is substituted by a summation over a finite

number of twist conditions θ. It is obvious that a larger number of twists corresponds to

a lower integration error. For choosing the quadrature, the same methods employed for

k-points sampling in DFT (see Sec. 4.2.5) can be used. It has been demonstrated [151]

that a uniform Monkhorst-Pack [142] mesh suitably offsett from the origin ensures the

most rapid convergence to the thermodynamic limit. A set of random twists is also often

employed [163].
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The most important feature of TABC is that averaging over twist conditions allows an

effective reduction of the statistical noise on the computed quantities. In fact, if Nt twist

conditions are used, the statistical error in TABC is given by:

σTABC =
1√
Nt

σ[θ], (5.6)

where σ[θ] is the mean statistical error on a single twist. Notice that at a fixed amount

of computer time, the attained σ[θ] is roughly the same for all twists except the ones

which can use a real-valued wavefunction which has a lower computational cost. Eq. 5.6

holds if one neglects all equilibration costs needed to thermalize the random walk when

the twist condition is varied. This is an additional amount of time which decreases the

TABC efficiency since no averages can be computed during this period. While in VMC

the equilibration time is negligible, within DMC it is usually sizable and it can take a

large part of the total simulation time. Therefore, for DMC, it is more efficient to use

only a few twist conditions or rely on the alternative special twist method introduced in

Sec. 5.4.

When using standard TABC there is, however, an important caveat: the number of

particles is kept fixed for all twist conditions included in the average. TABC thus works

in the canonical ensemble. However, as explained in Sec. 4.2.5, the correct independent

particle thermodynamic limit is obtained by sampling the Fermi surface within the grand

canonical ensemble with variable number of particles. If this is not verified, at each twist

only the N single-particle orbitals with lowest energy are considered; therefore, even in

the limit of an infinite number of twists, the standard TABC method does not sample

the right Fermi surface in the independent-particle limit. This introduces a systematic

error in the evaluation of kinetic energy; this bias slowly goes to zero with a power law

1/Nν [162, 151] when approaching the infinite supercell size limit.

The correct independent particle limit of the kinetic energy and momentum distribution

can be restored by allowing the number of particles to vary among twist conditions [161,

162, 164, 152]. This method goes under the name of grand canonical TABC (GTABC).

The number of particles associated with each twist can be simply determined analytically

in the case of an isotropic Fermi surface, such as in the non-interacting homogeneous

electron gas. For realistic metallic systems, the filling of single-particle states at each

twist must be determined at a mean-field level using HF or DFT calculations. Notice that

in doing so, it is assumed that the Fermi surface does not appreciably vary among the

reference mean-field method and QMC. A similar assumption is made also when applying

the special twist method detailed in Sec. 5.4 to correlated calculations. Although the

validity of this hypothesis cannot be verified, one can indirectly probe it, for the systems

under consideration, with the simple method detailed in Sec. 5.6.3.
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The other side of the coin is that the variable number of particles reintroduces strong

kinetic energy fluctuations [151]. The width of these fluctuations is typically larger than

the kinetic energy bias introduced by the standard TABC. Furthermore, the many-body

wavefunction needs to be optimized from scratch separately for each boundary condition.

This strongly affects the overall efficiency of the method.

All the results obtained with twist averaging methods presented in this Chapter employ

the standard TABC in the canonical ensemble.

5.4 Special twist methods

Special twist (ST) techniques provide an alternative approach for reducing FS effects due

to shell filling of single-particle orbitals and, at the same time, maintaining the correct in-

dependent particle limit of the total energy. Here we introduce the theoretical foundations

of ST methods within correlated QMC calculations and we propose a simple numerical

procedure for finding special twist values within the supercell BZ which reproduce the

mean-field thermodynamic limit with an adjustable numerical accuracy.

5.4.1 Theoretical foundations

As explained in the previous Chapter, within a mean-field framework as DFT the total

energy of the infinite system is computed as a BZ integral:

E∞ =
Ω

(2π)3

∫

ΩBZ

dk E(k), (5.7)

where the energy E(k) has been already summed over the electronic bands. Here our focus

is on the energy since it is the most basic quantity to evaluate in QMC. The mean-value

theorem for definite integrals ensures the existence of a special point k∗, the so-called

mean-value point, for which the integrand in Eq. 5.7 equals the integral:

E(k∗) = E∞. (5.8)

The above relation is an exact alternative to the full BZ integration in Eq. 5.7. The

validity of above theorem is restricted to continuous integrands. This is always the case

for an insulator, wherease discontinuities in E(k) can arise in metals making Eq. 5.8 an

approximation only.

Eq. 5.8 is valid within a single-particle theory, but it can be effectively exploited in

correlated calculations for reducing one-body FS effects. Here we describe the theoretical

foundations of the ST method for QMC. The numerical implementation we propose in
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this thesis will be explained in the last part of this Section and is generally applicable to

any correlated many-body method. As usual, we consider a supercell with NS electrons

described by the direct lattice vectors LS. This supercell is taken as an integer multiple

of the primitive cell of the solid containing NP ≤ NS electrons. The basic idea behind

the ST method, inspired by the aforementioned concept of a mean-value point, is to find

a twist condition θs which, in the single-particle limit of the many-body wavefunction,

reproduces the exact mean-field infinite-size energy. The practical implementation of this

idea consists in finding a solution to Eq. 5.8 within the given supercell. Let us consider a

metallic system described by a single-particle wavefunction such as the single determinant

ΨSD introduced in Eq. 2.11. In the previous Chapter (Sec. 4.2), we saw that the energy

per particle within the Kohn-Sham approach can be written as:

E∞[ρ∞] =
1

NpNk

Nk∑

i=1

∑

n∈occ

〈

Ψn,ki

SD

∣
∣
∣HDFT[ρ∞]

∣
∣
∣Ψn,ki

SD

〉

=

=
1
Np

Nk∑

i=1

wi
∑

n∈occ

Fβ(Eki
n [ρ∞]− µ∞) Eki

n [ρ∞], (5.9)

where we used the same notation as Eq. 4.16 omitting the spin index for the sake of

simplicity. In Eq. 5.9, the energy is computed within a primitive cell and the number of

particles can vary for each boundary condition through the smearing function Fβ; thus

E∞ is a grand canonical quantity.

We would like now to reproduce the infinite size energy in Eq. 5.9 with a single special

twist value θs. The DFT energy per particle computed for this special twist now reads:

Eθs
[ρθs

] =
1
Ns

〈

Ψθs

SD

∣
∣
∣HDFT[ρθs

]
∣
∣
∣Ψθs

SD

〉

=

=
1
Ns

∑

n

H(Eθs

n − µθs
)Eθs

n [ρθs
], (5.10)

where H is the Heaviside step function, ρθs
is the electronic density calculated for the

special twist value only, and the chemical potential µθs
is such that the effective number of

electrons is equal to the true number of particles in the system. At variance with E∞[ρ∞],

this energy is now computed within the QMC supercell and, furthermore, no fractional

electron occupations are allowed. Eθs
[ρθs

] is thus computed in the canonical ensemble

with a fixed number of particles.

Given this formalism, finding the special twist solution to Eq. 5.8 is equivalent to

satisfying the following equality:

Eθs
[ρθs

] = E∞[ρ∞]. (5.11)

Eq. 5.11 can be interpreted as a way to find the energy in the canonical ensemble which

best approximates the correct thermodynamic limit evaluated within the grand canonical
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ensemble. Once Eq. 5.11 is solved, it is possible to build a many-body wavefunction

with the chosen twist value which automatically fulfills the correct (at the DFT level)

independent-electron limit, at variance with the standard TABC method. As we will

show in Sec. 5.6, this approach leads to a large reduction of the one-body FS errors in

QMC calculations, whilst keeping at the same time an affordable computational cost.

In conclusion, it is important to remark that we use DFT(LDA) as a reference for

single-particle theories.

5.4.2 The Baldereschi method

Eq. 5.11 can be solved approximately using the approach devised by Baldereschi in

Ref. [165].

The Baldereschi method is based upon the fact that, within an independent electron

framework, any intrinsic property of the crystal is periodic in the direct lattice identified

by the vectors Lm. This is valid for a primitive cell simulation box as well as for a supercell

compatible with the primitive cell translations. The symmetry operations associated with

the Bravais lattice of the crystal form a group referred as Γ1. As usual, we consider the

total energy as the reference observable. Belonging to the representation Γ1 of the crystal

point group imposes a set of constraints in the Fourier expansion of the energy which can

be expressed as a linear combination of symmetrized plane waves as follows:

Eθ =
∞∑

m=0

amG
(Γ1)
m (θ). (5.12)

In Eq. 5.12 the index m spans the stars of equivalent lattice vectors within the Γ1

representation, identified by Γ1(Lm) and the plane waves are defined as G(Γ1)
m (θ) =

exp [−iθ · Γ1(Lm)] with G
(Γ1)
0 = 1. Notice that the functions {G(Γ1)

m } only depends on

the underlined crystal structure and not on the specific observable considered.

By inserting Eq. 5.12 in the BZ summation in Eq. 5.7, we notice that all terms of the

summation except the first give a vanishing contribution, i.e. E∞ = a0. This simply

derives from the following plane waves property:
∫

ΩBZ

dθ e(−iθ·Γ1(Lm)) = (2π)3δ(Γ1(Lm)),

where δ is the Dirac delta function.

Therefore, the special twist θs is retrieved by requiring that all G(Γ1)
m vanish except the

first one. Baldereschi pointed out that this condition can be satisfied in an approximate

way by requiring that only the first n Fourier components of Eq. 5.12 go to zero:

G(Γ1)
m (θs) = 0 for m ∈ [1, n]. (5.13)
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n is generally chosen equal to 3 since we are seeking the 3 components of the special

twist angle: θs = (θsx, θ
s
y, θ

s
z). The Baldereschi method is a simple procedure for finding

special twist values which best approximate the true mean-value point in either primitive

or supercell calculations. However, the approximation in Eq. 5.13 is valid only if the

observable has a smooth behavior in the reciprocal space. In this case, the higher Fourier

components of the symmetrized plane wave expansion give a negligible contribution to the

total sum. This is verified for insulators, whereas for metallic systems with a sharp Fermi

surface, the approximation is not satisfactory and the Baldereschi method gives poor

results when used for FS error correction. In the following we go beyond the Baldereschi

approximation by proposing a procedure which can yield exact values of the special twist

down to a desired numerical accuracy. We will see that the performance of our method

is far superior to the simpler Baldereschi point for reducing one-body FS effects.

5.5 Exact special twist procedure

5.5.1 Detailed procedure

In this thesis we propose an alternative to the Baldereschi approximation which aims at

finding an exact numerical solution of Eq. 5.11. The first and – to our knowledge – unique

attempt to tackle this problem can be found in Refs. [144, 143]. Here the authors argued

that a suitable θs can be chosen in the set {Gs/2}, where Gs are the supercell reciprocal

lattice vectors. This choice ensures that the underlined k-points mesh possesses inversion

symmetry, thus allowing to employ a real-valued wavefunction and avoid complex arith-

metics. The offset belonging to this set which provides the best thermodynamic limit

is then determined via cheap DFT calculations in the LDA approximation at different

supercell sizes.

At variance with the previous works, our procedure is not limited to real-valued wave-

functions thanks to the formalism developed in the previous Chapter. Our method, which

we dub exact special twist (EST), allows to find the right special twist with an adjustable

numerical accuracy. Furthermore, at variance with the Baldereschi method, it is system

dependent and it can be used for any type of observable ranging from the total energy

to structural parameters and correlation functions. The detailed steps of the EST are

explained in the following:

1. At first we determine the thermodynamic converged energy E∞ (Eq. 5.9) within an

independent-particle approach. For the 3D-HEG calculations presented in this Sec-

tion, the reference energy is the non-interacting (NI) energy: EHEG
∞ =

∑

k∈occ k2/2 ≃
2.21
r2

s
whose value is completely controlled by the Wigner-Seitz radius rs, i.e. by
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the electronic density. For realistic QMC runs (Sec. 5.6), we evaluate it at the

DFT(LDA) level using a fully converged k-point mesh [142] and with the same ba-

sis set as QMC. All these calculations are carried out in the primitive cell with a

negligible computational cost as compared to QMC.

Figure 5.2 – Panel (a): Energy landscape of the non-interacting (NI) 2D homogeneous electrons gas
with 90 particles at a Wigner-Seize radius of rs = 1 a.u. as a function of the twist angle θ in π/L units,
where L is the cubic box parameter. Two representative directions in the Brillouin zone, (1,0) and (1,1),
are shown. The exact value of the NI energy is represented by the dashed line. The energy surface
presents some cusps which are due to discontinuous changes in the occupations of the electronic states.
We notice that several twist conditions in both directions match the value of EHEG

∞ . Panel (b): in analogy
with the 2D homogeneous electron gas, for the DFT(LDA) case we scan a diagonal direction of the first
Brillouin zone. In this plot we present a sample calculation on β-tin Si with a 16 atoms supercell. The
diagonal direction is identified by a single parameter kdiag again expressed in π/L units. The straight
line indicates the value of the thermodynamically converged limit at the same level of theory.
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2. The second step consists in solving numerically Eq. 5.11. In the case of the HEG,

we select several directions in the BZ and we scan the reciprocal space along these

directions in order to find the value of the twist θs giving the exact non-interacting

energy EHEG
∞ . In Fig. 5.2a the simple case of the two dimensional electron gas with

rs = 1 a.u. is shown. The same procedure can be straightforwardly applied to the

three dimensional electron gas that is the subject of the next Section. Similarly,

in the case of realistic QMC calculations (Fig. 5.2b), we pick a direction in the

first Brillouin zone (in general along a diagonal, thus characterized by just one

parameter) and scan the DFT(LDA) band structure by computing energies at each

twist on a uniform grid along the chosen direction. These runs must be performed

within the same supercell used for QMC (Eq. 5.10) as explained at the beginning

of this Section. We select the value which reproduces the thermodynamic limit

within an energy range smaller than the accuracy required by QMC calculations.
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In particular, for the metallic systems presented in Sec. 5.6, we choose an accuracy

of the order of 0.001 eV/atom in determining the special twist, since we have a

target precision of ∼ 0.01 eV/atom in the corresponding QMC runs. Notice that

the selected twist will almost certainly require a complex-valued determinantal part

in the QMC variational ansatz. In contrast with Refs. [144, 143], this is the case for

all calculations presented in Sec. 5.6.

We notice from Fig. 5.2 that several twist values might satisfy the special twist

condition in Eq. 5.11. In fact, the EST forms a surface in the reciprocal space; since

the Fermi surface of the single-particle reference method is likely to be different with

respect to the correlated QMC one, it is in principle possible that different choices

of EST would give different total energies, thus posing a serious issue on the validity

of our method. In Tab. 5.1 we demonstrate that, in practical calculations, this is not

verified. In fact, it is apparent that for both 3D-HEG and realistic calculations the

outcome at the VMC level is independent on the BZ direction chosen to compute the

EST value. For all considered points on the EST surface, the VMC energies displays

at most a difference of 3σ, thus they can be considered in statistical agreement.

Furthermore, we verified the dependence of the special twist on the reference single-

particle framework. In order to do so, we apply our numerical procedure to β-tin Si

using both DFT(LDA) and the simpler Hartree method (obtained imposing VXC = 0

instead of the full DFT exchange-correlation functional). The results are presented

in Tab. 5.2, where we also present the energy differences between thermodynamically

converged and EST calculations for both methods. Interestingly, we found that

for all supercell size the EST value varies only very slightly when passing from

one method to the other. This finding suggests that the single-particle reference

framework does not represent a crucial issue for the EST determination; a logic

explanation is that the EST is not too sensitive to small changes in the Fermi

surface, as confirmed also from the results in Tab. 5.1. Since a simple Hartree

calculation is extremely cheap and does not require any self-consistency, one can

simply construct an automatic procedure for finding the exact special twist.

3. Once the special twist value θs is found, we perform a final DFT(LDA) super-

cell calculation with the selected twist. The resulting wavefunction is used as the

determinantal part of the total QMC ansatz.

4. Given the JSD wavefunction built in the previous steps, we carry out the Jastrow

optimization using the real flavor of the stochastic reconfiguration method discussed

in Chap. 2. Both the linear coefficients and the Gaussian exponents of the Jastrow
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Table 5.1 – We report the VMC energies of several values of the exact special twist chosen following
different directions in the reciprocal space. The EST values (θx, θy, θz) are in crystal coordinates with
respect to the orthorhombic supercell used in the calculations. Calculations are presented for the 3D-
HEG with 54 particles (top) as well as for bcc-Li structure and β-tin Si (bottom), two realistic metals
which will be thoroughly investigated in Sec. 5.6. We used a 16 atoms supercell for bcc-Li and a supercell
containing 8 atoms for β-tin Si. Energies are expressed in Ry for the 3D-HEG results and in eV/atom for
the realistic calculations. It is apparent that for all considered values on the EST surface, the resulting
energies at the VMC level are in optimal statistical agreement.

3D-HEG

BZ direction rs [a.u.] EEST
JSD

(1,1,1) 10 -0.106446(12)

(1,1,0) 10 -0.106418(13)

(1,1,1) 1 1.15536(18)

(1,1,0) 1 1.15513(20)

DFT(LDA)

(θx, θy, θz) System EEST
VMC

(0.2638, 0.2638, 0.2638) Li -7.1667(7)

(0.2122, 0.5000, 0.2122) Li -7.1684(7)

(0.1785, 0.2500, 0.5000) Li -7.1663(12)

(0.1362, 0.3181, 0.5000) Li -7.1675(8)

(0.2118, 0.2118, 0.2118) Si -106.5213(58)

(0.2500, 0.2500, 0.1961) Si -106.5225(58)

(0.4167, 0.0833, 0.2500) Si -106.5277(61)

(0.2500, 0.2118, 0.2118) Si -106.5211(54)

are optimized. In the case of the bcc Li structure we test the effectiveness of the

special twist method in predicting structural properties by performing full QMC

crystal cell relaxations. In this case, the QMC determinant is also fully optimized

using the twist-independent method introduced in Sec. 4.5.2. Molecular dynamics

benchmark calculations on liquid hydrogen are also performed for the same purposes.

5. The final QMC energy is evaluated with the VMC and LRDMC methods using

the JSD ansatz. The procedure is repeated at different supercell sizes in order to

perform an extrapolation to the infinite size limit. For realistic calculations we

extrapolate the results with a linear polynomial in 1/N , which should include the

correct leading order of our curves. For the HEG case we use a quadratic polynomial
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Table 5.2 – Comparison of the special twist values extracted with the procedure explained in the text
using DFT(LDA) or simple Hartree theory as independent particle reference methods. In the first two
rows we show the energy difference – in eV/atom – between the fully converged Hartree and DFT(LDA)
energies and the EST energy at the same level of theory. The difference is always kept of the order of
0.001 eV/atom. In the last two rows we report the values of the special twists. We choose them along a
diagonal direction in the BZ for the both methods. DFT(LDA) and simple Hartree theory values of EST
show a very good agreement for all supercell sizes.

# of Si atoms

8 16 64 96

energy difference
Hartree -0.0012 -0.0023 0.0016 -0.0009

DFT(LDA) -0.0031 -0.0021 0.0011 0.0018

θs value
Hartree 0.2096 0.1862 0.2618 0.2644

DFT(LDA) 0.2123 0.1835 0.2612 0.2625

in 1/N instead.

In conclusion, our procedure for finding special twist values is cheap and its accuracy can

be adjusted depending on the considered physical problem. The way we select the special

twist ensures the correct independent-particle limit for the many-body QMC wavefunction

without relying on the grand canonical ensemble formalism as required by the TABC

technique. Besides these features, our approach also possesses the advantages of employing

only a single twist: the computational cost of an EST calculation is thus about 2.5 times

the cost of a simple gamma point simulation.

5.5.2 Benchmark calculations on 3D homogeneous electron gas

The homogeneous electron gas in 3 dimensions (3D-HEG) is certainly the most studied

benchmark model for correlated metallic systems. Its importance is not limited to the

model level; it also constitutes the basis for building the local density approximation

routinely employed in density functional theory[16].

In this work, we simulated the 3D-HEG at an electronic density corresponding to

a Wigner-Seitz radius of rs = 10 a.u. This value has been used in several published

works [162, 153] carried out with the TABC method, and it is therefore convenient for

the sake of comparison. In Fig. 5.3 we present the FS size extrapolation of the HEG

total energy per electron as a function of the inverse number of particles. We analyze

the performance of the EST method by comparing it with simple PBC [158] and with

TABC calculations [162] both carried out with the same Slater-Jastrow trial wavefunc-

tion as ours. The arrow in Fig. 5.3 indicates the infinite size limit as presented in the
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original manuscript in Ref. [162]. We did not apply any many-body FS corrections to our

results. We can immediately notice that both the EST and TABC methods are effective

in suppressing shell fluctuations as the number of particles grows. Both methods yield

a very smooth curve and we can easily extrapolate our EST results to the infinite size

limit using a quadratic polynomial fit. In principle the next leading correction is decreas-

ing as N−4/3 in 3D. However, being this exponent quite close to the leading one, it is

difficult to see it in the considered range of supercells. We have found much better fit

using N−2 as next leading-order correction. Such choice is justified in the case that the

corresponding coefficient is rather small, namely the curvature in the corresponding fits is

almost negligible. In fact, in this range of sizes the O(N−2) contribution dominates over

the O(N−4/3) and O(N−5/3) ones, which become eventually more relevant only for much

larger number of particles. Furthermore, we can directly match the thermodynamic limits

of the variational energy yielded by the two methods. The TABC and EST results are in

agreement within the statistical error bar σ ∼ 2× 10−5 Ry, the extrapolated EST energy

being −0.10558(2) Ry/N, with −0.10561(5) Ry/N the corresponding TABC energy.

At variance with the other methods, the shell fluctuations in the PBC energies are

too large to perform any extrapolation, as expected. The difficulty is apparent also if

one considers the infinite-size estimate of −0.10549(2) Ry/N reported in Ref. [158]. We

notice that it still displays a discrepancy of the order of ∼ 5σ with respect to the EST

and TABC infinite size limits. This disagreement is likely due to residual one-body FS

errors dependence which cannot be suppressed despite the very large number of particles

employed for this simulation.

In Fig. 5.4 we present an additional comparison of our EST method with a calculation

performed using the GTABC approach [153]. At variance with the TABC results presented

in Fig. 5.3, a backflow correlated variational wavefunction is used for the GTABC results.

This ansatz gives a better energy and produces the rigid shift in the thermodynamic

energy estimate present in Fig. 5.4.

In Fig. 5.4 we also report the EST results (blue line) corrected with the aforemen-

tioned procedure based on the small wavelengths RPA structure factor [153] for curing

many-body errors in both the kinetic energy and the interaction parts of the Hamiltonian.

The comparison is interesting since it proves the effectiveness of combining many-body

corrections with our approach. We notice that both EST and GTABC corrections dras-

tically improve the estimation of the energy at small numbers of particles, leading to a

convergence below 1 mRy when including more than 54 electrons in the simulation.
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Figure 5.3 – Comparison of different method for alleviating FS effects in the 3D electron gas. Energies
are computed with the VMC method. The orange arrow indicates the infinite size limit as presented in
Ref. [162]. The solid line through the EST results is obtained with a simple quadratic polynomial fit.
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Figure 5.5 – VMC extrapolation to the infinite-size limit for solid bcc structure of hydrogen at a Wigner-
Seitz radius rs = 1.32. Results are corrected for two-body errors with the KZK method [?]. The x axis
reports the inverse number of atoms in the supercell. In the inset we zoom into the results for the largest
supercells in order to appreciate the thermodynamic limit convergence. The x axis reports the inverse
number of atoms. For EST and TABC values we also show in the inset a linear fitting curve – as well
as its energy extrapolation at N = ∞ (leftmost point labelled as ∞−1) – carried out by excluding the
smallest supercell with 16 atoms.
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5.6 Realistic systems with the EST method

This Section contains an analysis of FS effects for several realistic systems by means of

the EST method previously introduced. We test it against the use of simple periodic

boundary conditions (PBC), the standard twist-averaged boundary conditions (TABC)

technique [162] explained in Sec. 5.3, and a different special twist determined with the

Baldereschi method [165] (see Sec. 5.4), which we dub Baldereschi point.

At first, we analyze the effectiveness of the EST method in extrapolating the total

energy to the infinite size limit. The last part of Sec. 5.6 analyzes FS effects on cor-

relation functions using the EST method. In particular, we present results on the bcc

lithium lattice constant evaluated with a zero temperature structural relaxation of QMC

ionic forces. Finally, we report some benchmark calculations on hydrogen-hydrogen pair

distribution function extracted from QMC based molecular dynamics simulations at high

temperature [166, 139, 8].

5.6.1 Many-body errors correction

If not otherwise specified, the energies are corrected for many-body FS effects using the

KZK energy functional introduced in Ref. [154]. The DFT(KZK) calculations are per-
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formed with the built-in DFT code of the TurboRVB package. This allows to consistently

use the same simulation setup for all calculations needed by the EST method.

The two-body FS corrections [136] we apply to the total QMC energy read:

ǫKZK
2b = ENs

LDA − ENs

KZK, (5.14)

where both LDA and KZK energies are computed within the same Ns electrons supercell

and the same twist(s) condition(s) as the corresponding QMC calculation. We verified

for some sample cases that the application of the Chiesa corrections [153] leads to very

similar results.

The effectiveness of the KZK method for reducing many-body FS effects is tested against

error estimations directly extracted from the QMC calculations, as we will see in detail

in Sec. 5.6.3.

5.6.2 Total energy

In this Section we analyze the FS effects on the energetics of three paradigmatic metallic

systems of increasing degrees of complexity. We believe these systems constitute an

exhaustive testing ground for the EST method and they pave the way for applying EST

to more complex compounds. For TABC calculations we choose a uniform Monkhorst-

Pack[142] mesh offsett from the Γ point of the supercell Brillouin zone. The number of

independent twist conditions is reduced using the point group symmetry operations of the

supercell lattice. In order to ensure convergence, the mesh size is varied at each supercell

size such that the corresponding number of inequivalent atoms times the number of twists

is kept constant and appropriately large. As a premise, it is important to remark that

we carried out linear extrapolations excluding from the fitting procedure the smallest

supercells for all considered systems. In fact, for these sizes, the residual shell effects

is still too high to carry out the linear fit. Our choice is also motivated by the fact

that QMC production runs will unlikely use such small supercell sizes for extrapolation

purposes, although they are useful in our benchmark calculations for determining the

overall behavior of the size convergence. The points used for the fitting curve are specified

for each system we address.

The first metallic system we address is solid hydrogen in the bcc structure. Despite

being the simplest element in the periodic table, hydrogen displays very intriguing prop-

erties and its phase diagram under pressure is far from being completely understood. In

particular, in the region up to ∼ 300 GPa, solid hydrogen undergoes numerous phase

transitions displaying exotic quantum properties which are not well characterized yet ei-

ther experimentally or theoretically [167, 168, 169]. It is well established that FS effects
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Figure 5.6 – Energy extrapolation on Li in the high temperature bcc phase. We show VMC results
(panel a) and LRDMC energies (panel b). The energies are compared with different techniques. Two-
body corrections are applied with the KZK functional approach. In the inset, a zoom of the results for
the largest supercells is shown. The x axis reports the inverse number of atoms. For EST and TABC
values we also show in the inset a linear fitting curve – as well as its energy extrapolation at N = ∞
(leftmost point labelled as ∞−1) – carried out by excluding the smallest supercell with 16 atoms.
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Figure 5.7 – Fermi surface contour plots along the kz = 0 plane for bcc-Li (left panel) and β-tin Si
(right panel). The contour has been taken at kz = 0. The calculations have been performed with the soft-
ware package Wannier90[171] based on DFT(LDA) results obtained with the Quantum ESPRESSO[18]
program.
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represent an important source of error in many-body simulations and the size of the

simulation supercell is crucial for obtaining accurate correlation functions in molecular

dynamics simulations of liquid hydrogen, as we will show in Sec. 5.6.4. Here we study the

bcc structure of solid hydrogen which has not been observed in nature yet, but is one of

the candidate structures for the high-pressure atomic phase due to its dense packing of

atoms [170].

We use a primitive Gaussian basis set of [J ](2s)[D](2s), where J refers to the Jastrow

and D to the determinantal part. The exponents of the determinant are taken from a

previous fully optimized calculation [139]. Despite its small size, this basis has been proven

accurate in describing both energetics and the most important correlation functions [166,

139] of hydrogen. The FS extrapolation at a the VMC level is presented in Fig. 5.5.

As apparent, both TABC and EST results show a very smooth convergence toward the

thermodynamic limit, indicating that most of the shell fluctuations have been eliminated.

By performing extrapolation to infinite size, we obtain a total energy of -13.7117(38)

eV /atom for TABC and -13.7197(43) eV /atom using our EST method. These two FS

correction methods are therefore in excellent agreement for a simple, but relevant system

such as hydrogen. If the Baldereschi point [165] is used to offset the twist grid, the

energy fluctuations are mostly suppressed, but the extrapolation procedure does not yield

a satisfactory result (see the inset of Fig. 5.5).

We turn now our attention to metallic bcc lithium. Bulk Li has been the subject of
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Figure 5.8 – Finite-size extrapolation with the VMC (panel a) and LRDMC (panel b) methods on Si in
the high pressure β-tin phase. Again a comparison is shown among various FS correction methods and
the inset reports a magnified view close to the thermodynamic limit. Two-body errors are corrected with
the KZK method. The x axis reports the inverse number of atoms. For EST and TABC values we show
in the inset a linear fitting curve – as well as its energy extrapolation at N =∞ (leftmost point labelled
as ∞−1) – obtained by excluding the smallest (8 and 16 atoms) supercells.
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intense studies due to the emergence of exotic quantum states, including superconduc-

tivity [172, 173] in its phase diagram under pressure and also to its extensive application

in battery development. Previous QMC investigations [174, 175] provided very accurate

results and, at the same time, established the important role of FS effects in determining

the converged ground state energy [175, 163]. For treating this system the localized basis

set used in this work is [J ](2s2p)[D](4s4p) and the 1s core electron is replaced with a BFD

pseudopotential [52]. A comparison among several FS correction methods is presented

in Fig. 5.6a for VMC and Fig. 5.6b for LRDMC energies. Both the TABC and EST

methods, in combination with KZK corrections, ensure an almost complete suppression

of energy fluctuations and provide a well converged result already for the 54-atom su-

percell, at variance with the Baldereschi point which displays a much slower convergence

with supercell size. In order to fully appreciate the convergence to the thermodynamic

limit, a zoom into the results for the largest systems is reported in the inset. The final

extrapolated results obtained using TABC and EST are in agreement to 0.002 eV/atom

for both VMC and LRDMC. This value is of the order of the attained statistical error.

These results demonstrate that the TABC and EST methods offer similar performance in

controlling FS effects in this system, although the former displays a slightly flatter curve.

The last system we address for benchmarking our method is the high pressure β-tin

structure of silicon. Upon application of a pressure of around 12 GPa, Si displays a

structural phase transition from the semiconductor diamond phase to a β-tin metallic

phase. The transition develops on a very narrow energy scale [176] and standard DFT

techniques yield unsatisfactory and functional-dependent results. Due to its sensitivity,

this phenomenon is a perfect ground for benchmarking advanced first principles methods

such as QMC and it has been extensively studied [177, 178, 136, 179, 180]. The tiny energy

scale (∼ 0.05 eV/atom) to be probed in order to spot the correct transition pressure

requires a very accurate control of finite-size effects [136]. Metallic Si offers a perfect

playground for testing the reliability of the EST method when tackling systems with

complex and discontinuous Fermi surfaces. To be more explicit, in Fig. 5.7 we show a

comparison of the LDA Fermi surfaces of bcc-Li and β-tin Si, where the contour has been

taken along the kz = 0 plane. We notice that the Li Fermi surface (Fig. 5.7a) displays

practically no features except for a large electron pocket centered at the Γ point. β-tin Si

(Fig. 5.7b) is considerably more challenging, in particular as a result of the small electron

pockets present at the Brillouin zone borders. As already presented in the Li case, we

report FS extrapolation in Si with KZK corrections for curing two-body FS effects. The

final results obtained with the VMC and LRDMC methods are shown in Fig. 5.8a and

Fig. 5.8b respectively. The EST method gives excellent results, comparable to the more

expensive TABC in eliminating shell filling effects. In this particular case, the energy
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curve obtained with the EST method is flatter than the TABC one. However, we notice

that the energy of the 16-atom supercell (second point from the right) is shifted towards

higher energies. We believe that this issue is related to the particularly poor sampling

of the Fermi surface for that set of k-points. This fact together with the relatively small

number of atoms in the supercell – which corresponds to a coarse k-points mesh – may

give rise to the shift observed in EST results. We verified, at the DFT level, that this shift

can be partially recovered by using a rotated supercell with lower symmetry. In Fig. 5.8

we do not include this point in the extrapolation procedure.

The infinite-size extrapolations of the TABC and EST total energies are in agreement up

to 0.005 eV/atom using the VMC method, a value below the attained statistical error. A

larger difference is apparent when using the LRDMC; beyond-leading-order extrapolation

might be more appropriate in this case. However, when the largest supercell (96 atoms

for EST, Baldereschi and TABC; 256 atoms at Γ point) is used, all results, independently

from the method used, are converged up to 0.01 eV/atom for all techniques, an accuracy

small enough to obtain a correct transition pressure [136]. We did not estimate this

transition pressure since this has already been done with the same method as ours in

Ref. [136] and, moreover, our main concern here is testing the EST method.

5.6.3 Comparison of errors in the EST method

In this Section we present a more quantitative discussion on the impact of FS effects in

the special twist approach.

By definition (Eq. 5.11), the EST method cancels out all FS errors derived from the one-

body contribution at mean-field level. However, if one switches electron correlation on in

QMC, the Fermi surface can vary from the single-particle estimation, thus reintroducing

some one-body finite-size effects to the EST-corrected results. Their size can be estimated

via the TABC technique, which ensures a denser sampling of the Fermi surface. Thus,

we provide an estimation of this residual contribution to the one-body FS errors directly

within QMC. For this estimate VMC is the method of choice as it likely provides an

outcome similar to LRDMC concerning FS effects and, since it is much cheaper, it can be

used in production runs for correcting the LRDMC energy results. The residual one-body

error at the VMC level reads:

ǫVMC
1b = ETABC,Ns

VMC − ENs

VMC, (5.15)

where ENs

VMC is the EST energy in a Ns-atom supercell, whereas ETABC,Ns

VMC is the corre-

spondent fully converged TABC result in the same supercell. Results for Li and Si are

presented in Tab. 5.3 (4th column); they constitute an indirect probe of the changes in
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ǫKZK
2b ǫVMC

2b ǫVMC
1b

# of atoms bcc-Li

16 0.1958 0.198(7) -0.013(6)

54 0.0378 0.061(5) -0.006(5)

128 0.0245 0.026(5) -0.003(2)

250 0.0125 0.013(5) 0.0002(17)

β-tin Si

16 0.3545 0.185(6) 0.026(2)

48 0.1181 0.096(7) 0.036(7)

64 0.0886 0.067(6) 0.042(6)

96 0.0574 0.042(8) 0.035(2)

Table 5.3 – Comparison of many-body FS effects estimated with different methods for both bcc-Li and
β-tin Si . All presented results are in eV per atom. Many-body errors are compared between the KZK
and VMC corrections, both detailed in the text. We notice an overall good agreement between the two
estimations for both Li and Si, except the case of the 16 atoms Si supercell which displayed similar issues
also in the energy extrapolation (see Fig. 5.8).

the Fermi surface when going from the DFT to the QMC level. In the bcc-Li case, one

can see that the one-body residual corrections are very small (one order of magnitude

smaller than the many-body effects) and decrease fast when the size is increased. This

implies that, in this case, the unknown exact value of the EST is supposedly very close to

the one obtained at the DFT(LDA) level. This is further confirmed by the fact that the

EST value changes only slightly from simple Hartree to DFT(LDA) mean-field estimates

(see Tab. 5.2). In other words, the EST is rather insensitive to the underlying theory used

to determine it, which makes the EST evaluation quite robust.

On the other hand, we notice that for β-tin Si the behavior of ǫVMC
1b is less systematic

as a function of the system size. This could be related to the limitation of the TABC

approach used to estimate the one-body corrections at the VMC level. Indeed, as already

mentioned, TABC works in the canonical ensemble and can introduce a bias in the energy

values due to the wrong k-point occupations, that can be particularly severe in the case of

β-tin Si where the Fermi surface is much more complex than in the Li case (see Fig. 5.7).

Similarly to the one-body part, the residual many-body contribution to FS errors can

also be evaluated at the VMC level. In Tab. 5.3 we compare the many-body error esti-

mations obtained with the standard KZK method in Eq. 5.14 (2nd column) and directly
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within VMC (3rd column) using the relation:

ǫVMC
2b = Eextr

VMC − ETABC,Ns

VMC (5.16)

where Eextr
VMC is the VMC energy extrapolated to the infinite-size limit. Notice that this

extrapolation is obtained using KZK corrected values; however, the infinite size limit must

obviously be the same.

Tab. 5.3 demonstrate that KZK and direct VMC estimations are in good agreement

concerning many-body FS errors for both Li and Si, thus supporting the use of the cheap

the KZK approach for production QMC runs. The only relevant discrepancy is for the

16-atom Si supercell which is a particularly delicate case both for both the EST and

TABC methods, as previously mentioned.

In conclusion, it is important to remark that the special twist values used for Li and

Si calculations have been determined using DFT(LDA) energies, and could be slightly

different from the values obtained directly with the DFT(KZK) functional. This discrep-

ancy could lead to some spurious contributions to the KZK estimate of the many-body

errors. However, we verified that the variation of the EST between the two functionals

is negligible, in line with what said before; thus, ǫKZK
2b is considered as purely many-body

and directly comparable with ǫVMC
2b .

5.6.4 Energy derivatives

In Sec. 5.6.2 we demonstrated the reliability of the EST method in extrapolating QMC

energies to the infinite-size limit. However, as already pointed out in Ref. [162], sampling

the Fermi surface with a single point might not be sufficient to account for more sen-

sitive properties of the system such as the potential energy or correlation functions. In

this Section we focus on testing the EST method with a particularly important type of

correlation function: the ionic forces. Their evaluation within QMC has been the subject

of intense research activity due to the intrinsic difficulty of finding an efficient and finite

variance algorithm for computing many-body energy derivatives. As already mentioned,

the AAD technique [72] introduced in Chap. 2 offers a solution to this issue. With our

approach it is thus possible to perform both zero-temperature structural relaxation and

molecular dynamics simulations based on QMC forces[166, 139, 7].

In Tab. 5.4 we present the optimization of the cell parameter of bcc Li carried out

with full QMC force minimization. The EST results are obtained with the same value of

special twist previously used for energy extrapolation.

Thanks to its denser sampling of the Fermi surface, the TABC method performs better

than single-twist methods, with the cell parameter already converged for the 54 atoms
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Table 5.4 – Lithium cell parameters obtained from VMC structural relaxation at different supercell
sizes. The EST results are compared with standard PBC calculations and with the most accurate TABC
method. We report also values obtained from fully converged DFT calculations in the LDA approxima-
tion, performed with the Quantum ESPRESSO[18] program using a 15×15×15 k-point mesh and norm
conserving pseudopotentials. Experimental cell parameters are also shown.

# of atoms Cell parameter [Å]

PBC EST TABC

16 3.497(6) 3.457(4) 3.454(4)

54 3.469(3) 3.476(3) 3.496(3)

128 3.521(3) 3.505(3) 3.502(2)

250 3.510(5) 3.506(2) 3.499(3)

DFT(LDA) 3.3537

EXP[181] 3.482

supercell. The EST method is slightly slower to converge towards the infinite-size limit

than the TABC method, but it displays a much smoother behavior with respect to simple

PBC calculations, thus allowing an easy extrapolation to infinite size. By performing

a linear extrapolation we obtain 3.508(3) Å for TABC and 3.504(5) Å for EST, which

are in statistical agreement. The residual discrepancy with the experimental value [181]

(∼ 0.025 Å) could be due to temperature effects which are not taken into account by

our calculations. However, the QMC results are already a substantial improvement with

respect to DFT(LDA) calculations.

The lower computational cost of the EST method makes this approach the appropriate

choice in the case of structural relaxation of more complex crystal cells, requiring the

use of large supercells or the simultaneous optimization of several structural parameters,

which would be computationally infeasible using the TABC technique, unless one uses

the twist-independent parameterization introduced in Sec. 4.5 of this thesis. The latter

technique allows us, with certain limitations, to optimize the wavefunction by collecting

the statistics of all twist conditions used in TABC for an efficient computation of the

energy derivatives.

The last part of this Section is devoted to benchmark calculations on the radial pair

distribution function (g(r)) of liquid hydrogen. The g(r) is extracted from QMC-based

molecular dynamics (MD) simulations at a temperature of 1800 K and an estimated

pressure of ≃ 260 GPa. Forces are computed with the AAD technique and the MD is

carried out with the methods introduced in Refs. [166, 139]. At these conditions, in our

simulations, liquid hydrogen is in the atomic phase [166]. This phase is metallic, hence
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Figure 5.9 – Hydrogen radial pair distribution function extracted from a molecular dynamics simulation
of liquid hydrogen at a density given by rs = 1.36 a.u. For this plot we use a 64-atom supercell. We
compare our EST method with the standard PBC, with the Baldereschi point and with TABC results
performed with a 4 × 4 × 4 uniform mesh (64 twists). For the sake of comparison, we also added a
simulation with TABC using a 128-atom supercell. We consider this result as our best estimate and
we labelled it as “exact” (with respect to size effects). The solid lines are obtained with a polynomial
interpolation as guide for the eye. Despite small discrepancies in the g(r) around the peaks, TABC and
EST display an overall good agreement each other as well as with the more accurate result obtained
with the 128-atom supercell. We notice instead some spurious features in the results obtained with the
Baldereschi point, in particular in the region zoomed in the inset (r ∈ [1.5, 3.2]).
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FS effects are likely to be important and need to be reduced in order to obtain a reliable

description of the system.

The evaluation of the special twist for liquid hydrogen MD is more challenging. Due to

its disordered nature, the system can be considered spherically symmetric and thus one

can assume that the Baldereschi point for cubic systems (1/4, 1/4, 1/4) would provide

a good approximation for the special twist, since the disorder favors the lowest Fourier

components of Brillouin zone integrals. In order to investigate this issue better, we extract

several configurations from a previous molecular dynamics simulation carried out with the

same conditions and apply the EST procedure. The special twist is obtained by averaging

among all the special values found. In the case of the 64 atoms supercell, we found that the

special twist has no relevant fluctuations among different configurations and that it tends

to a value of (1/4, 1/4, 0), in contrast with the initial assumption; we conclude that within

this relatively small supercell the system tends to break the spherical (cubic) symmetry
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Figure 5.10 – Same as Fig. 5.9 but performed with a larger supercell containing 128 hydrogen atoms.
In this case the disorder of the system prevails and the system can be considered spherically symmetric;
for this reason the special twist coincides with the Baldereschi point. We notice that at this supercell
size the EST and TABC curves are practically indistinguishable, while PBC is still far from the other
two methods, especially in the description of the first peak around r = 3.2 a.u.
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given by its disordered nature. On the contrary, for the 128-atom supercell we found a

special twist very close to the cubic Baldereschi point, as expected. This demonstrates

that this supercell is sufficiently large to correctly account for the disordered nature of

liquid hydrogen.

In Fig. 5.9 the g(r) is reported for the 64-atom supercell. The overall behavior of

the EST curve is in good agreement with the TABC curve with only small discrepancies

around the peaks. This is not the case for simulations carried out with the Baldereschi

point, where we notice an anomalous feature close to the first peak at r ∼ 2.8 a.u.

An excellent agreement between the two methods is instead obtained with a 128 atoms

supercell, as shown in Fig. 5.10 where TABC and EST (Baldereschi) curves perfectly

superpose. At variance with the EST method, even for this larger supercell, the g(r)

extracted from PBC calculations qualitatively differs from the more accurate TABC result.

The EST method remains reliable for the evaluation of ionic forces, in both simple struc-

tural relaxation and pair distribution functions extracted from MD simulations. However,

accordance with the more expensive TABC technique is achieved only when relatively

large supercells are employed. Hence, if one has to compute correlations functions using

the EST method, a careful assessment of the impact of supercell size is needed before
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starting production runs.

5.7 Flavor twist method

In this Section we test the flavor-twisted boundary condition (FTBC) method. This

technique represents an alternative approach to the problem of FS errors in correlated

calculations; in fact, the sole common thread with the previous methods is the use of

twisted boundary conditions in the many-body wavefunction. At variance with the other

techniques presented in this Chapter, FTBC is constructed to provide an effective remedy

not only to the kinetic energy fluctuations, by means of an appropriate twist-averaging,

but also to a part of the many-body FS effects, thanks to an approximate mapping from

a large and in principle infinite simulation cell to a smaller and tractable system. Despite

being a promising approach in this sense, the application of FTBC to condensed matter

physics has been very limited and it appears – to our knowledge – only in Ref. [182].

In fact, the general idea of FTBC has been mostly employed in the domain of high-

energy physics [183, 184]. In this context, FTBC enable the study of quantum chromo-

dynamics (QCD) lattice models with allowed quantized momenta different from the ones

imposed by the standard use of plain PBC. The purpose is again to reduce volume effects

and study the behavior of the quantum fields at different momenta.

Following Ref. [182], let us consider a simulation setup consisting of a cubic supercell

of total size L subjected to PBC. Electrons in this simulation cell are described by the

Hamiltonian denoted with ĤL. The basic FTBC idea can be better understood by ex-

pressing the many-body electronic Hamiltonian (Eq. 2.2) in Fourier space. The standard

second quantization expression for this operator reads:

ĤL =
∑

G,σ

ǫσGC
†
G,σCG,σ+

+
1
L

∑

Q







∑

G,σ

∑

G′,σ′

Uσ,σ′

G,G′,QC
†
G+Q,σC

†
G′−Q,σ′CG′,σ′CG,σ






,

(5.17)

where the operator CG,σ(C†
G,σ) annihilates (creates) a particle with momentum G and spin

σ; {ǫσG} and {Uσ,σ′

G,G′,Q} are the bare energy dispersion (one-body part of the Hamiltonian)

and the interaction function (two-body part of the Hamiltonian) respectively. The vectors

{G} and {G′} belong to the reciprocal lattice of the large supercell of size L.

The wavevector Q represents the momentum transferred between two electrons when

they interact through the particle-particle Coulomb potential and it also belongs to the

reciprocal lattice of the larger system.

Starting from the large system with size L, one can then select a smaller subsystem of
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size l < L. Without loss of generality, we can assume that this subsystem is contained

within the initial supercell and therefore the ratio L/l is a positive integer.

Within this small subsystem, the reciprocal lattice vectors g, g′ are defined on a coarser

grid with respect to the larger system of size L; furthermore, since we assumed the smaller

system to be contained in the larger one, we have that: {g} ⊂ {G}.
From these definitions, it follows that any vectors in reciprocal lattice of the larger

system can be rewritten as a function of a corresponding vector in the smaller subsystem

in the following way:
G = Θ̄1

σ
+ g

G′ = Θ̄2
σ′

+ g′

Q = Q̄ + q

(5.18)

{Θ̄1
σ}, {Θ̄2

σ′

} and {Q̄} are L/l offset vectors applied to the set of reciprocal lattice of the

large supercell and which fill the interstitial region between the finer grids {G}, {G′}, {Q}
and the coarser grids {g}, {g′}, {q}. These wavevectors belong to the first BZ of the large

supercell and play the role of a twist condition for the many-body wavefunction. We define

them as dependent from the particle spin. Therefore, according to the implementation of

FTBC discussed here, the role of the flavor is represented by the spin of the particles.

The FTBC method is based on two approximations. The first one consists in restricting

the transferred momentum Q only to the coarser mesh defined by the smaller subsystem,

namely:

Q = Q̄ + q→ Q = q. (5.19)

This approximation limits the range of momenta to which a particle can be scattered to

the coarse grid formed by the l points q in the reciprocal lattice of the small system.

Within this approximation, it can be shown that the Hamiltonian ĤL of the larger

system can be rewritten as follows:

ĤL ≃
L

l

∑

Θ̄1,σ1

∑

Θ̄2,σ2

Ĥl(Θ̄
σ2

1 , Θ̄
σ2

2 ,q), (5.20)

where we explicitly write the dependence of the smaller system Hamiltonian on the inter-

stitial wavevectors defined in Eq. 5.18.

In Eq. 5.20, the pairs (Θ̄
σ1

1 , Θ̄
σ2

2 ) are all linked, thus the cost of this sum would still be

O(L(L/l)2) ∼ O(L3), the same complexity as the full problem within the large system,

even after the application of the aforementioned approximation. The FTBC method is ob-

tained by enforcing another approximation in Eq. 5.20, which consists in neglecting all the

links among the twist pairs (Θ̄
σ1

1 , Θ̄
σ1

2 ) and integrating them as if they were independent.

Such an approximation restricts the final complexity of Eq. 5.20 to O((L/l)2) ≪ O(L2).
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The FTBC method consists therefore in an approximate expression of the Hamiltonian of

the large system with dimension L as a function of the Hamiltonian of a smaller system

with dimension l ≪ L, suitably integrated over a set of spin-dependent twist conditions.
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Figure 5.11 – DFT(LDA) calculations with the FTBC method on the Li bcc structure (left panel) and
Si β-tin structure (right panel). In the bottom x axis we report the total number of twists used in the
FTBC method, whereas the twist mesh used for standard TABC is shown in the top x axis.

The ground state eigenvector of the Hamiltonian Ĥl(Θ̄
σ1

1 , Θ̄
σ2

2 ) satisfies the generalized

many-body Bloch condition as follows:

Ψ(r1, . . . , r
↑
i + l, . . . , r↓

j + l, . . . rN) = ei(Θ̄
↑
1+Θ̄

↓
2)·lΨ(r1, · · · , rN) ∀ i, j ∈ [1, N/2] (5.21)

Thanks to the formalism developed in the previous Chapter, we are able to assign an

arbitrary twist to each flavor (spin) and thus to fulfill the gauge condition on the many-

body wavefunction required in Eq. 5.21. This allows the application of FTBC to realistic

QMC simulations of metallic systems for the first time. It is worth remarking that the

standard TABC method is retrieved from FTBC by setting Θ̄
↑

1 = Θ̄
↓

2 and again performing

the integration considering independent twists.

In the practical QMC implementation of FTBC within the TurboRVB code, we define

two uniform meshes of size Nt in the supercell BZ with an offset among them of 0.5

the BZ length along the three Cartesian directions. From the first mesh we select the

twists for ↑ particles, whereas from the second mesh we extract the corresponding twists
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Figure 5.12 – VMC calculations with the FTBC method on the Li bcc structure (left panel) and Si β-tin
structure (right panel). In the bottom x axis we report the total number of twists used in the FTBC
method, whereas the twist mesh used for standard TABC is shown in the top x axis. The straight lines
indicate the infinite-size limit coming from the extrapolation obtained in the previous Section without
many-body error corrections.

for the down spin sector. In this way we create the Nt × Nt matrix in the reciprocal

space required to perform the integration of the small system Hamiltonian in Eq. 5.20.

We apply the FTBC method to two metallic systems studied in Sec. 5.6. Simulations

are carried out in small supercells without the application of any corrections as we are

interested in determining the performance of this technique for reducing both one-body

and many-body effects when increasing the number of twist conditions. For the bcc Li

structure we use a 16-atom supercell, whereas for the Si β-tin system a 8-atom supercell

is employed.

We first assess this approach at the DFT(LDA) level by comparing it with the standard

TABC approach with a uniform k-points grid [142]. In this case, no explicit electron-

electron interaction is present; thus, FTBC should give similar results to the standard

TABC calculation in the convergence to the thermodynamic limit. This is confirmed by

the results presented in Fig. 5.11 where the DFT(LDA) convergence with the number of

twists is shown for bcc Li and β-tin Si. We report also the thermodynamically converged

DFT(LDA) value; it is apparent that both approaches reach this limit with the same trend

as expected. The residual difference between FTBC and TABC results at this level of
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theory has a pure one-body origin. We verified this assumption by performing benchmark

TABC calculations where we assigned to the spin down sector a k-point grid shifted with

respect to the spin up sector, as done for FTBC. In this way we recovered exactly the

same DFT(LDA) energy for the two methods.

A correlated many-body framework such as VMC is a more meaningful approach for

testing the reliability of the FTBC approach. In Fig. 5.12 we present the VMC results

again for bcc Li and β-tin Si. In this case, the straight line in the plot corresponds to

the infinite-size limit obtained with the extrapolation procedure presented in the previous

Section. If the mapping constructed in Eq. 5.20 is a valid approximation for the large

system, we expect this method to converge more rapidly to the correct thermodynamic

limit indicated by the straight line in the plots with respect to the standard TABC, when

using a small supercell. However, our results show that both in the lithium (left panel)

and silicon (right panel) cases, FTBC displays a very similar behavior to the standard

twist-averaging technique and many-body errors remain sizable in both situations. More

than to the independent-twist approximation, the poor performance of FTBC in curing

many-body size effects is likely linked to a choice of a too coarse grid for the transferred

momenta q (Eq. 5.19). The integration error arising from this substantial coarsening of the

q grid is too large to ensure a suppression of the leading 1/N behavior in the extrapolation

to infinite size. This assumption should be validated by performing a similar calculation

on a larger supercell for both systems studied here. This is left for future investigations.

5.8 Conclusions

In this Chapter we introduced and discussed the most important source of errors in QMC

calculations of solids, namely the systematic effect arising from the finite size of the

simulation cell. We focus our attention on the contribution to FS errors coming from the

kinetic energy fluctuations due to shell filling effects in the one-particle orbitals. In order

to mitigate these effects we presented here two methods representing an alternative to the

mainstream TABC technique used in most part of modern QMC investigations.

The first approach is based on a novel procedure, which we dubbed EST, to find special

twist values in the Brillouin zone corresponding to the simulation cell which reproduce

the mean-field infinite-size energy up to an arbitrarily high numerical accuracy. .

This procedure has several advantages with respect to TABC technique. From a com-

putational point of view, it is a single-twist technique and it is therefore more afford-

able, especially within diffusion Monte Carlo calculations characterized by a significant

equilibration time. It is thus not only possible to accurately determine thermodynamic

converged total energies, but also to perform structural relaxation of complex supercells
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or even large molecular dynamics simulations within the QMC framework. On the other

hand, the EST method is constructed in order to maintain the exact mean-field thermo-

dynamic limit of the many-body variational energy. This feature allows to avoid any bias

in the kinetic energy evaluation and provides, in principle, a more reliable description of

the Fermi surface when a large supercell is used.

The EST method ensures a reduction of shell fluctuations comparable to the TABC

technique on energy extrapolation to infinite size. We demonstrate this at first on the

3D electron gas model, and then on total energy extrapolations of three realistic metallic

systems of increasing degree of complexity: solid bcc hydrogen, bcc Li and the high-

pressure β-tin phase of silicon.

The calculation of correlation functions such as ionic forces is more delicate. We show

for both zero temperature structural relaxation and molecular dynamics simulations that

EST performs better than any other single-twist method. However, the TABC technique

still shows a better performance, thanks to its denser sampling of the Fermi surface.

However, for reasonably large supercell sizes, EST and TABC techniques are in perfect

agreement. Therefore, a careful study of the supercell size dependence is necessary before

applying the EST method in QMC production runs for the calculation of correlation

functions. We believe that EST procedure here introduced can be the method of choice

for reducing FS effects in many practical situations, particularly when the complexity of

the system or the required supercell size make the more demanding TABC calculations

infeasible.

The second method we presented is the flavor twist boundary conditions approach and

it is an evolution of TABC which introduces different twist conditions for up and down

spin sectors. It is applicable within our framework thanks to the generic twist conditions

on the many-body wavefunction introduced in the previous Chapter. The basic idea of this

approach is to perform an approximate mapping of the Hamiltonian of a large supercell

onto the one of a much smaller system thanks to a suitable integration over a set of

spin-dependent twist conditions. Whereas FTBC should in principle cure both one-body

and many-body finite size errors, by applying the method to bcc Li and β-tin silicon we

show that its performance is very similar to the TABC technique: it successfully cures

one-body errors, but it does not lead to an appreciable reduction of many-body errors.

The ideas and methods discussed in this Chapter are of paramount importance to obtain

reliable QMC simulations of solid systems and they will be thus extensively used in our

QMC study of the high-temperature superconductor FeSe presented in the last Chapter

of this thesis.



Chapter 6

Applications to iron-based

superconductors: the case of iron

selenide

6.1 High-temperature superconductivity from first prin-

ciples

6.1.1 Introduction

High-temperature (HTc) superconductivity is one of the major open problems in modern

physics. The discovery of the cuprate HTc family in 1986 [29] triggered an intense research

effort that nowadays counts more than 15000 published works. These newly discovered

materials immediately gave rise to several issues from both theoretical and applied points

of view. Indeed, superconductivity in cuprates is not explained by the Bardeen-Cooper-

Schrieffer (BCS) theory since the electron-phonon coupling constant is too small for a

BCS-like electron pairing mechanism; therefore cuprates are often called unconventional

superconductors. A comprehensive and predictive microscopic theory of unconventional

superconductivity is still far from reach despite the decades old efforts.

In 2006, unconventional and HTc superconductivity were found in the iron-based lay-

ered compound LaOFeP [185]. This discovery led to a new impetus in HTc research

and over the past years a plethora of novel iron-based superconductors (FeSCs) with

different properties has been produced. At variance with cuprates, whose parent com-

pounds are generally strongly correlated Mott insulators, FeSC parent compounds display

a metallic or semi-metallic conductive behavior and are found, in general, to be weakly

correlated [186]; furthermore, these materials show a quasi-2D layered crystal structure,

132
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which is relatively simple with respect to the cuprates. These features combined with

good mechanical properties make FeSCs more appealing than copper-oxides for poten-

tial commercial applications. Nevertheless, their discovery added several questions to

the puzzle and broke the conventional wisdom that Fe should not play a direct role in

superconductivity.

Despite their difference in structure and parent compounds, cuprates and FeSCs show a

striking similarity in electronic structure properties [187], which leads to a quite universal

phase diagram under doping or pressure application. The common thread which might

explain these analogies is the proximity and often coexistence of the superconducting

regime with an antiferromagnetic (AFM) phase [188]. This finding has been supported

by many experimental works [189] and it has led to the hypothesis that the unconventional

pairing mechanism may be generally mediated by (bosonic) AFM spin fluctuations in both

families of superconductors [190].

However, a theoretical verification of this claim is still far from reach. Indeed, in

order to provide a reliable description of HTc, theoretical tools need to cope with several

complications such as the multi-band nature of these compounds and the diverse building

blocks of their physics: weak Van der Waals forces, which bind layers together, magnetic

fluctuations, and sometimes also strong electron correlation [187, 191]. These features

give rise to a highly non-trivial behavior upon doping and also, differently from cuprates,

pressure application, and to a rich phase diagram which is very sensitive to tiny variations

of the crystal structure and internal parameters [192, 193]. Nevertheless, the similarities

between copper oxides and FeSCs suggest that a single accurate theoretical framework

may give an exhaustive description of high-temperature superconductivity.

6.1.2 QMC: an appropriate first-principle framework

Ab initio simulations of HTc and FeSCs in particular were mostly carried out with DFT-

based methods until a few years ago. However, it is well established that the aforemen-

tioned building blocks driving their behavior are poorly reproduced by DFT. A great deal

of research effort has been spent to construct density functional theories specifically de-

signed to tackle the HTc problem and to account for the role of spin fluctuations in these

materials. These techniques are based on a generalization of the Kohn-Sham formalism,

which enforces an explicit functional dependence of the DFT Hamiltonian on the super-

conducting order parameter [194, 195]. Alternative ways have also been proposed, such

as mixed frameworks combining DFT for the initial band structure and correlated GW

or dynamical mean-field theory (DMFT) methods for calculating spin susceptibilities and

other observables [191, 196]. Besides the dependence on the chosen energy functional,
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there is another intrinsic issue behind these attempts. In fact, the electron condensation

energy for the unconventional electron pairing is much smaller than in BCS-like super-

conductivity and a first principles approach would need a precision ≪ 0.01 eV/atom

(subchemical accuracy) in order to correctly account for it. As discussed in Chap. 3 for

open systems, this condition is hard to meet when using effectively independent electron

methods such as DFT.

Continuum QMC represents a very promising alternative since, as we have stressed

throughout this thesis, it is in principle able to cope with all the ingredients required to

describe FeSCs physics (dynamical spin fluctuations, tiny structural variations and strong

electron correlation) within a unified and truly first principles approach. The ab initio

framework proposed in this thesis can provide a direct comparison with experimental re-

sults without requiring any adjustable input parameters or functionals, as are required

in the case of DFT. Moreover, at variance with DMFT and its cluster variants, does

not require the “downfolding” of the continuum Hamiltonian to lattice model Hamiltoni-

ans [197].

However, the high computational cost of QMC for solids prevented the extensive use of

this technique in the field of unconventional superconductivity until recent years. Nowa-

days, this trend has started to change and FeSCs are accessible by QMC thanks to the

computational power of modern supercomputers. Previous published works focused on

the properties of copper-oxides materials [198, 131] and demonstrated the capabilities

of QMC in tackling the ground state magnetic properties of these systems. A limited

number of applications of continuum QMC to FeSCs has appeared so far, for instance

Ref. [149]. Our work on FeSe published in Physical Review B [135], issued from part of

the results presented in this Chapter and is one of the first attempts in this direction.

Notice that, among all QMC flavors, our implementation detailed in Chap. 2 and 4 is

particularly well suited for HTCs. In fact, the JAGP wavefunction offers a direct probe of

the electron pairing function and allows one to accurately recover its symmetries and to

make an estimate of the pair condensation energy and hence of the critical temperature,

as shown in Ref. [149].

6.1.3 The case of FeSe: simplicity does not exclude complexity

In the context of HTc, a reliable first principles approach must first of all provide a reliable

description of the electronic properties of its normal state. In this Chapter we present a

thorough investigation of a representative member of the FeSCs family of chalcogenides

(S,Se,Te) [199]: the iron selenide (FeSe) compound.

FeSe is certainly one the most intriguing and best studied of the FeSCs. This is due,
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on one hand, to its very simple crystal structure (only 2 atoms in the unit cell) composed

of a stack of iron planes without any intercalating charge reservoir as in cuprates or other

FeSCs. The room temperature tetragonal P4/nmm structure of FeSe is shown in Fig. 6.1.

The atomic and axis notations reported in this Figure are used throughout this Chapter.

Figure 6.1 – Layered structure of the FeSe high-temperature superconductors. At room conditions, this
compound belongs to the P4/nmm tetragonal point group with a unit cell containing 2 atoms. We report
here the labelling we used in Sec. 6.3 to identify the FeSe structural parameters. The only internal degree
of freedom is represented by the Se height above the iron planes which we denote as hSe. Around 90 K
FeSe undergoes a tetragonal-to-orthorhombic transition (passing from P4/nmm to Cmme point group)
with a small distorsion yielding a b/a ratio of ∼ 1.005.

Se

Fe

hSe
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However, simplicity does not exclude physical complexity; in this respect, the case

of FeSe is emblematic. This can be easily understood by looking at one of the first

published FeSe pressure-temperature phase diagrams in Fig. 6.2a [200]. This experimental

work was carried out with the neutron scattering technique and has been supported by

several successive investigations. First of all, we notice that numerous structural phases

appears as a function of both pressure and temperature. The tetragonal-to-orthorhombic

transition revealed around 90 K is particularly important; this phase transition is usually

called the “nematic” transition and it has triggered a great interest since it is a universal

feature of FeSCs and, its origin, either magnetic or orbital driven, has not been elucidated

yet [201]. We will not discuss this aspect of FeSe physics in this Chapter.

Moreover, the FeSe superconducting properties undergo significant changes when pres-

sure is applied, as the critical temperature raises from 8 K at room conditions to ∼ 36

K at around 7 − 9 GPa. Not only the change in structural parameters caused by the

application of pressure, but also the thickness of the sample strikingly affects the super-

conducting properties. Indeed, it has been surprisingly found that if a single-layer of FeSe
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is deposited on a SrTiO3 substrate, the critical temperature rises to the record value for

FeSCs of ∼ 100 K [202, 203]. Recently, a similar increase in the critical temperature has

been spotted also on different substrates such as MgO. It is likely driven by an intrinsic

doping of FeSe single-layer when interacting with the substrate [204].

(a) (b)

Figure 6.2 – Two phase diagrams of FeSe as a function of pressure. Panel (a) is adapted from Ref. [200]
and dates back to 2009, right after the discovery of FeSe. It shows numerous structural phase transitions
and no long range magnetic ordering. Panel (b) reports a very recent phase diagram adapted from
Ref. [205] in which a new antiferromagnetic phase appears around 0.8 GPa. In this panel, the label OR
indicates the orthorhombic (“nematic”) phase, SC is the superconducting region and M identifies the
newly discovered antiferromagnetic long-range ordered phase. We notice that at low temperature there
is a coexistence of the magnetic and SC phases.

Whereas the superconducting properties are reasonably well-established, the nature of

the electronic ground state of FeSe is still under intense debate. Until a few months ago,

it was conventionally accepted that this compound did not have any long-range magnetic

ordering over the whole phase diagram, as reported in Ref. [200]. A possible explanation

for this exceptional behavior, different from any other FeSCs, lies in the detection of strong

antiferromagnetic (AFM) spin fluctuations [200, 206], which could suppress the static

ordering of the spins. However, this picture has been very recently questioned. Using a

highly sensitive muon spin rotation technique [207] and Mössbauer spectroscopy [205], a

new phase diagram of FeSe has been found which is presented in Fig. 6.2b. We notice that

a new phase appears above 0.8 GPa close to the onset of superconductivity. This phase

has been clearly identified with the long-range AFM phase discovered previously [208].

This novel scenario adds several puzzling questions to the fundamental physics of FeSe,

especially because of the uncommon coexistence [209] in this compound of magnetism

and superconductivity above 0.8 GPa.

It is evident that extracting reliable experimental results from bulk FeSe is challenging.

This is mainly due to the intrinsic difficulty in obtaining crystals with the correct stoi-
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chiometry. In such situation, ab initio calculations are of paramount importance to guide

experimental results.

However, the precise calculation of the properties of this material remains challenging

for mean-field methods such as DFT. In the particular case of FeSe, the main reason for

this failure is the strong electron correlation which has been clearly found with DMFT

calculations [191]. For example, the DFT(PBE) band structure is in poor agreement with

experiments, which report a considerably narrower bandwidth [210]. Furthermore the

FeSe lattice constants display an average error of ∼ 0.1 Å independent of the exchange

correlation functional employed (see for instance Ref. [211] and Tab. 6.3).

6.1.4 Organization of the Chapter

In this Chapter we present the first extensive investigation of the properties of the normal

state of FeSe with the advanced QMC techniques discussed in this thesis work. All details

and validation of the QMC calculations are reported in Sec. 6.2. In Sec. 6.3 we focus on

crystal structure predictions and show that our method provides the best agreement with

experimental results among the available ab initio approaches. A significant part of the

discussion is devoted to the internal parameter of the compound, the Se height above

the iron planes. We show that its evaluation is a challenging task, but that it can be

successfully used as a parameter for tuning the properties FeSe and understanding where

DFT-based techniques fail. In Sec. 6.4 we investigate several possible candidate magnetic

patterns for the ground state of FeSe and study their behavior upon the application of

pressure. We found that QMC predicts the collinear (0, π) magnetic state as ground state,

in disagreement with DFT. Furthermore, a clear distinction between collinear and non-

collinear magnetic orderings under pressure is shown. We also comment on our results

in the paramagnetic FeSe phase. The very accurate picture of structure and energetics

yielded by QMC sets the stage for elucidating several fundamental connections between

geometry, magnetism and charge degrees of freedom, which we present in Sec. 6.5. A

simple explanation based on the Hund’s coupling rule allows us to reconcile most part

of our results on this compound. Finally, in Sec. 6.6 we draw the conclusions to this

Chapter.
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6.2 Technical details of the QMC calculations

6.2.1 Two complementary QMC flavors

In this work, carried out in collaboration with the group of Lucas K. Wagner at the

University of Illinois, we thoroughly compare two distinct QMC flavors. This allows us

to validate and complement the description of FeSe by QMC.

We dub the first method QMC(opt), where QMC stands for VMC or DMC depending

on the chosen method. QMC(opt) results have been fully carried out during this thesis

and are obtained by optimizing the single-particle orbitals directly at the QMC level,

using the techniques explained in Chaps. 2 and 4. The diffusion Monte Carlo calculations

are obtained with the lattice regularized variant (Sec. 2.4.2) and structural relaxation is

performed by direct ionic forces minimization. QMC(opt) calculations are performed with

the TurboRVB package [1] and they have been all carried out during this thesis work.

The second QMC flavor uses a different strategy. The single-particle orbitals are frozen

to the DFT values obtained with the hybrid density functional PBE0, with a hybrid

mixing parameter of 0.25. We dub this technique QMC(PBE0), where again QMC stands

for VMC or DMC. DFT calculations for generating the orbitals are carried out with

the Crystal [25] program whereas QMC runs are performed with the open source software

QWalk [212]. Diffusion Monte Carlo results are obtained with the standard Green function

DMC algorithm with non-local moves [213] for dealing with the BFD pseudopotentials.

Furthermore, in this case the relaxation of the internal parameter is carried out with the

standard Morse fitting procedure of the total energy curve. The QMC(PBE0) calculations

have been mainly performed by Brian Busemeyer, graduate student in the group of Lucas

K. Wagner.

For both methods we employ energy consistent [53] pseudopotentials for Fe (16 elec-

trons) as well as for Se (6 electrons). We verified with all-electron DFT calculations that

the pseudopotential error is below our target accuracy of 0.01 eV/Fe.

As we will see throughout this Chapter, QMC(opt) and QMC(PBE0) are complemen-

tary and offer a coherent overall picture of FeSe physics. We believe that their comparison

strongly supports the validity of the QMC approach for tackling FeSCs, independently

of the particular implementation of the method. Furthermore, the reliability of the less

expensive QMC(PBE0) method is also confirmed.

Since the QMC(opt) calculations have been all carried out during this thesis, the techni-

cal details presented in this Section are related to this method only. We refer the reader to

our work in Physical Review B [135] for further information on convergence and validation

of the QMC(PBE0) flavor.
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6.2.2 Simulation setup: supercells and magnetic phases

We perform calculations on several FeSe supercells subjected to PBC. The smaller one is

composed by 2× 2× 1 primitive cells with 4 Fe atoms and 4 Se atoms. The largest one is

a 4×4×1 simulation cell with 16 Fe and 16 Se atoms. All QMC(PBE0) calculations have

been instead carried out with a rotated supercell containing 8 formula units (8 Fe and 8 Se

atoms). Some test calculations have also been performed on a 2× 2× 2 supercell with 16

atoms which explicitly includes an additional Fe plane. For all results presented, we use

the tetragonal P4/nmm structure. As we already mentioned, the low temperature ground

state structure (see Fig. 6.2) belongs to the Cmme orthorhombic point group. However,

the orthorhombic distorsion is of the order of 0.5% [214, 215], hence the use of the simpler

tetragonal structure should not affect the overall electronic structure properties.

Concerning the magnetic ordering, we investigate several possible candidates for the

possible and still unknown magnetic ground state of FeSe (see Fig. 6.2b). These magnetic

patterns are enforced directly at the preliminary DFT stage of the calculations by imposing

the determinant orbitals to possess the right spin pattern. This is then kept during the

following QMC simulation, even in the case of orbital optimization. Notice that, due

to the relatively small size of our supercells, long-range spin fluctuations which could

destroy these orderings cannot be described. The main magnetic patterns studied in this

Chapter are presented in Fig. 6.3. They include the simple AFM or checkerboard pattern

(Fig. 6.3a) with antiparallel nearest neighbor spins, the collinear configuration with chains

of aligned spins with alternate signs (Fig. 6.3b). Some QMC(PBE0) calculations are also

performed with the bicollinear pattern, which is built with double chains of aligned spins

(Fig. 6.3c), and with the staggered dimer configuration in Fig. 6.3d. Along with magnetic

phases, several results have been taken within the paramagnetic configuration.

6.2.3 Wavefunction and basis set

We use the Jastrow-single determinant (JSD) ansatz introduced in Eq. 2.41 for all FeSe

calculations presented in this Chapter.

For the Slater determinant, we choose a primitive Gaussian basis set tailored for tackling

periodic solids (Eqs. 2.14 and 4.9). The number of Gaussians in the primitive basis set is

(7s6p6d) for Fe and (5s4p4d) for Se. To reduce the number of variational parameters we

found it more convenient in this situation to use standard atomic basis contractions. The

optimal contractions can be obtained restricting the procedure outlined in Chap. 3 to a

single angular momentum channel. A contracted atomic orbital is then defined as a linear
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Figure 6.3 – Different magnetic patterns investigated in the FeSe compound. The two colors represent
atoms with majority of ↑ and ↓ spin electrons. In panel (a) is shown the simple antiferromagnetic or
checkerboard structure. In panels (b) and (c) are reported two flavors of spin “chain” configurations: the
first one is the collinear pattern with a single chain of aligned spin and the second one is the bicollinear
configuration with a rotated double spin chain. In panel (d) we show the staggered dimer configuration,
which is the DFT ground state for FeSe [216].

(a) (b) (c) (d)

combination of primitive basis orbitals sharing the same angular momentum channel:

χ̃al,m =
nl∑

n=1

anχ
a
l,m,n (6.1)

where we use the same notation as Eq. 2.14. The coefficients {ai} are now taken as

variational parameters in the wavefunction optimization procedure. If Ncontr ≪ Nbas con-

tracted orbitals are chosen, the total number of parameters Pcontr in the full wavefunction

reduces to: Pcontr ∝ Ncontr × Ntot ≪ Ntot × Ntot. The number of contracted orbitals

employed for each angular momentum channel is chosen to attain the best compromise

between size and quality of the contraction. We determine the quality of the contracted

basis by performing DFT(LDA) calculations and checking both the resulting total energy

and the overlap S = 〈Ψfull| Ψcontr〉 between the wavefunction expanded over the primitive

basis and the contracted basis sets respectively. In Tab. 6.1 we report the results of this

test for some of the contracted basis sets we tried. We notice that the contracted basis

composed by [3s2p2d] for Fe and [2s2p1d] for Se offers the best compromise both in terms

of overlap and total energy difference with the uncontracted wavefunction. This is used

for all QMC production runs.

The Jastrow factor is much cheaper to evaluate with respect to the determinantal

part. Therefore we employ a primitive basis set of size (3s2p1d) for Fe and (2s2p) for Se

without any contraction. We use the complete charge and spin Jastrow form introduced

in Eq. 2.35. This choice has been supported by test calculations against a simple charge

Jastrow obtained by setting to zero the matrix elements Sa,bµ,ν in Eq. 2.35. In Tab. 6.2 we

report the energies per Fe atom obtained using the two aforementioned Jastrow flavors
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Table 6.1 – We report a detailed study on the contracted basis set convergence for FeSe. Several
contractions of the primitive basis Fe(7s6p6d)Se(5s4p4d) are tested. The final atomic contraction is
chosen as the best compromise between the overlap S defined in the text (second column) and the total
energy difference ∆E between the contracted and uncontracted wavefunctions at the DFT(LDA) level
(third column). In the fourth column we also show the corresponding number of optimizable variational
parameters in the QMC determinant.

Basis set S ∆E [Ha] # of parameters

Uncontracted basis 1.0000 0.0000 5060

Fe[2s2p2d]Se[2s2p1d] 0.9979 19.8863 641

Fe[3s2p2d]Se[2s2p1d] 0.9987 1.9108 692

Fe[3s3p3d]Se[2s2p2d] 0.9993 1.8909 1117

at different magnetic orderings.

Table 6.2 – FeSe energies with different forms of the Jastrow factor. The total energies are in Ha per Fe
atom, while energy gains from simple charge to the full Jastrow factor are reported in eV per Fe atom.
The tetragonal state is used within the 4×4×1 supercell and experimental geometry [214]. Calculations
are performed at the Gamma point. We verified that the energy gain is independent of the chosen twist
condition. For all magnetic configurations the gain is above 0.04 eV/atom, a value which allows us to
distinguish between different magnetic phases. We notice that for the VMC energies, which are much
more sensitive to the quality of the variational wavefunction, this gain can be up to 10 times larger than
in the LRDMC results.

Method Paramagnetic Checkerboard Collinear

VMC - charge Jastrow -133.1851(4) -133.1868(4) -133.1987(5)

VMC - charge+spin Jastrow -133.2106(2) -133.2228(3) -133.2396(5)

En. gain VMC -0.694(12) -0.980(14) -1.113(19)

LRDMC - charge Jastrow -133.2861(8) -133.3136(6) -133.3092(6)

LRDMC - charge+spin Jastrow -133.2876(7) -133.3197(7) -133.3135(5)

En. gain LRDMC -0.041(29) -0.166(25) -0.117(21)

It is apparent from these results that the inclusion of the spin sector in the Jastrow

term allows a considerable reduction (≥ 0.04 eV/atom) of the variational energy for all

considered magnetic configurations. We notice that the gain obtained from using the

full Jastrow factor at a VMC level is around one order of magnitude larger than the

corresponding gain in LRDMC calculations. Since VMC is much more dependent on

the quality of the trial wavefunction, this highlights the significant improvement in the

variational ansatz obtained by including dynamical spin fluctuations within the Jastrow

factor. The full Jastrow factor is used for all QMC(opt) calculations presented in this

Chapter.
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It is important to remark that from the results in Tab. 6.2 one can infer that the

simple AFM checkerboard state is lower in energy than the collinear configuration, in

contrast with what was mentioned in the introduction and presented in Sec. 6.4. This

apparent discrepancy is due to the lack of treatment of finite-size errors as the calculations

presented here are performed at the Gamma point only. We address this problem in the

next Section.

6.2.4 Finite-size effects and lattice extrapolation
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Figure 6.4 – Size extrapolation of the VMC and LRDMC energies in the FeSe paramagnetic phase at
different twist conditions. The top panels report the energies without any two-body corrections, whereas
the bottom panels show the KZK [154] corrected values. We notice that these corrections give a great
benefit to the convergence rate with the system size. The final finite size error in VMC and LRDMC
energies is below the target statistical error of 0.01 eV/atom.

Finite-size effects have a large impact on the quality of FeSe calculations both in the

energetics and in crystal structure predictions, as we will see in Sec. 6.3. Within the

QMC(opt) method, the one-body finite-size effects (see Chap. 5) are cured by averaging

over two boundary conditions: the simple PBC with no twist and the fully antiperiodic
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between collinear and checkerboard magnetic ordering for DMC(opt) (thick outline) an DMC(PBE0) (thin
outline). DMC(opt) data points are averaged over periodic and fully antiperiodic boundary conditions
with two-body error corrections, while DMC(PBE0) are averaged over 8 twists. The extrapolations are
in agreement within statistical error.
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Figure 6.6 – Lattice space extrapolation to a→ 0 of the LRDMC energies in the 2× 2× 1 supercell of
the paramagnetic FeSe. The continuous curve is obtained from a linear fit. The final extrapolated energy
at a = 0 is −533.4214(6) Ha. A lattice space of a = 0.125 a.u. gives an error of ∼ 0.01 eV per Fe atom
which is our target accuracy. Therefore, for all final results presented in this Chapter this lattice space
is used.

boundary conditions (APBC) equivalent to a twist condition of (1
2
, 1

2
, 1

2
) in reciprocal

lattice units. This approach is less sophisticated than the EST method presented in

Chap. 5 since these calculations were performed when the implementation of complex-

valued wavefunctions within the TurboRVB package was still under development.
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The two-body errors are treated by means of the KZK functional method elucidated in

Sec. 5.6 of the previous Chapter. We report the supercell-size extrapolations in Fig. 6.4 for

both the VMC and DMC methods. We notice the effectiveness of the KZK correction in

smoothing the impact of two-body errors by observing the different energy scale between

top and bottom panels. After applying the two-body corrections, the residual finite-size

effects in the LRDMC energies are of the order of ∼ 0.005 eV/atom, which is below our

target accuracy. The VMC error is slightly higher (∼ 0.0085 eV/atom), but still below

the target precision of 0.01 eV/atom.

In QMC(PBE0) calculations the average is instead performed over 8 twist conditions

and no two-body corrections are applied since they likely cancel out when taking the

energy difference. We verified the consistency of the two QMC flavors concerning size

effects by checking the energy differences between collinear and checkerboard magnetic

configurations with the typical setting used for production runs: 8 twists for QMC(PBE0)

and 2 twists with KZK corrections for DMC(opt). The results are presented in Fig. 6.5.

We find that the extrapolated values as well as the largest supercell sizes we used are in

perfect statistical agreement.

We conclude this Section by assessing the additional error source represented by the

finite lattice space used in LRDMC calculations. We select the best lattice space by

performing test calculations on the paramagnetic 2× 2× 1 supercell of FeSe. Results are

shown in Fig. 6.6. We choose for productions runs a lattice space of a = 0.125 a.u. which

gives an error of ∼ 0.01 eV/atom with respect to the extrapolated value.

6.3 Structural properties

Obtaining the correct crystal structure for FeSe is a major challenge. This is mainly due

to the non-bonded interaction among iron layers and to the strong link between crystal

parameters and magnetic degrees of freedom, as we will see later on. The c lattice pa-

rameter in particular is affected by Van der Waals (VdW) interactions whereas electron

correlation plays a key role in determining the in-plane physics. The behavior of FeSe’s

superconducting properties under pressure (see Fig. 6.2) gives another clue to the impor-

tance of structural variations in its description. The prediction of its lattice parameters is

thus an important test for assessing the accuracy of first principles methods. Since struc-

tural relaxations at a QMC level are computationally costly, we limited our study to the

tetragonal phase of FeSe since we can safely assume that the small orthorhombic distor-

sion does not affect the final results presented in this Section. On the other hand, the b/a

ratio could be parametrically varied in order to investigate the tetragonal-to-orthorhombic

transition in FeSe. This is left for future work.
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Source Magnetic Ord. a c FeFe hSe

DFT(PBE) paramagnetic 3.6802 6.1663 2.6023 1.3862

DFT(PBE) collinear 3.8007 6.2363 2.6966 1.4568

DFT(DF2) paramagnetic 3.7181 5.2778 2.6323 1.3980

VMC (2× 2× 1) paramagnetic 3.59(1) 5.296(8) 2.536(8) 1.40(1)

VMC (2× 2× 2) paramagnetic 3.81(1) 5.35(1) 2.69(1) 1.38(1)

VMC (2× 2× 2) collinear 4.10(1) 5.13(1) 2.902(9) 1.331(15)

VMC (4× 4× 1) paramagnetic 3.71(1) 5.49(1) 2.62(1) 1.43(1)

VMC (4× 4× 1) collinear 3.72(1) 5.68(1) 2.63(1) 1.56(1)

experimental [217] - T 7 K 3.7646(1) 5.47920(9) 1.4622

experimental [215] - T 8 K 3.7685(1) 5.5194(9) 2.6647(3) 1.5879

experimental [214] - T 300 K 3.7724(1) 5.5217(1) 1.4759

Table 6.3 – FeSe optimal structural parameters with different computational methods. DFT calculations
have been performed with the software Quantum ESPRESSO [18] using a 10× 10× 10 k-points mesh,
an energy cutoff of 75 Ry and norm conserving pseudopotentials for both Fe and Se. The PBE and Van
der Waals corrected DF2 functionals are compared. All VMC results presented in this Table are obtained
with the QMC(opt) method, since with the simpler QMC(PBE0) the complete structural relaxation
cannot be achieved. VMC calculations are carried out at the Gamma point only for all supercell sizes
and magnetic configurations presented.

The equilibrium lattice parameters of FeSe for various magnetic orderings and cell

sizes are presented in Table 6.3. As mentioned in the previous sections, these results are

obtained with a direct optimization of FeSe cell parameters at the VMC(opt) level of

theory.

If we consider our best result in the 4 × 4 × 1 supercell, the in-plane FeSe properties

should be well captured by QMC since the a lattice parameter is in close agreement with

experimental results (within ∼ 4 σ) independently of the chosen magnetic configuration.

Results obtained using both collinear and paramagnetic wavefunctions shows also a gen-

eral improvement with respect to DFT(PBE) concerning the c lattice parameter. This

provides evidence of the accuracy in treating VdW interactions with the QMC wavefunc-

tion, mainly achieved with the long-range part of our Jastrow factor. Notice that the

importance of weak inter-planes interactions is also demonstrated by the outcome of the

DFT(DF2) calculations [218], which explicitly treat VdW long-range dispersion within

the Kohn-Sham Hamiltonian. This approach improves plain DFT(PBE) results in the

paramagnetic phase for all considered crystal parameters.

It is important to remark that the geometry showing the best agreement with experi-

ments is given by the paramagnetic phase; as we shall see in the next Section, this outcome

is in contradiction with the energetics, where the paramagnetic displays a much larger

energy value with respect to all other magnetic configurations.
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The evaluation of the inter-plane c distance might be affected by the dispersion along

the z-axis. In order to address this issue, we relaxed the structure of a 2× 2× 2 supercell

which explicitly contains an additional Fe plane. We notice that in the paramagnetic phase

the differences with respect to the single plane 2× 2× 1 supercell are negligible whereas

both are quite far from our best result. Also the c parameter shows a slight improvement

with respect to the single plane supercell. The collinear configuration displays completely

wrong crystal parameters with respect to both experiment and its 4× 4× 1 counterpart.

Such a finding is certainly due to the poor description of the in-plane magnetism caused

by the too tiny size of the in-plane simulation cell; this affects the overall description of

the FeSe crystal structure as modeled by this supercell.
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Figure 6.7 – Behavior of the Se height as a function of pressure. Here we compare several experi-
mental results with the QMC outcome at different magnetic configurations. The paramagnetic results
are obtained with the VMC(opt) technique by direct VMC force minimization, whereas collinear and
checkerboard results are evaluated by fitting total DMC(PBE0) energy curves with a Morse function. A
strong dependence of the Se height both on the QMC method (variational or diffusion MC) and on the
chosen magnetic ordering is present. We notice also that the experimental results are quite scattered,
highlighting the intrinsic difficulty to accurately measuring hSe both theoretically and experimentally.

Let us now focus on the internal parameter hSe, namely the height of the Se anion
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Figure 6.8 – Comparison of VMC(opt) and DFT curve of the Se height as a function of pressure. DFT
calculations are performed with the software Quantum ESPRESSO [18] using a 10× 10× 10 k-points
mesh, an energy cutoff of 75 Ry and norm conserving pseudopotentials for both Fe and Se. Due to the
complication in hSe evaluation, we focus here on the paramagnetic phase only and on the experimental
outcome provided by Ref. [214], and we use the Se height as a parameter for tuning FeSe properties. Van
der Waals corrected DFT(DF2) shows a monotonic increasing curve, in contrast with VMC(opt) and
experiments. hSe behavior is linked to both in-plane and out of plane properties of FeSe, therefore this
discrepancy suggests a relevant different between the VMC(opt) and DFT description of the physics of
this compound. We provide a simple explanation to this issue in Fig. 6.9.

above the plane. It has been experimentally demonstrated [192] that there is a universal

correlation, common to a large number of FeSCs, between variations of this parameter

and the superconducting properties, the critical temperature in particular. We collect

all our calculations of hSe, as well as some experimental results in Fig. 6.7. From this

Figure it is evident that a reliable measurement of hSe is very hard to obtain from both

experimental and theoretical points of view.

In particular, within QMC we find this parameter to be strongly affected by the mag-

netic configuration chosen (see also Tab. 6.3). Furthermore, the Se height is very sensitive

to finite-size effects, either out-of-plane or in-plane. Due to this sensitivity, we decided

to validate our QMC methods by performing DMC(PBE0) and DMC(opt) calculations

with exactly the same setup. For this purpose, we used a small 2× 2× 1 supercell in the

collinear configuration at the Γ point. We computed the optimal Se height by fitting with

a Morse function the total energy curve with both methods and we found 1.46(2) Å for the

DMC(opt) method and 1.40(5) Å for the DMC(PBE0) method. The two values lie within
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Figure 6.9 – We present in this graphs how the Se height behavior is affected by changing the parameters
a and c of the FeSe crystal structure at different levels of theory. DFT(DF2) calculations are performed
with the software Quantum ESPRESSO [18] using a 10× 10 × 10 k-points mesh, an energy cutoff of
75 Ry and norm conserving pseudopotentials for both Fe and Se. DFT(PBE0) calculations are instead
performed using the software VASP [19] with a 5 × 5 × 5 k-points mesh, an energy cutoff of 100 Ry
and norm conserving pseudopotentials for both Fe and Se. We notice that the DFT outcome shows a
different slope as a function of both a (underestimated) and c (overestimated). As detailed in the text,
this behavior can be elucidated by a simple physical explanation. This accounts also for the monotonic
behavior of hSe under pressure seen at a DFT level (Fig. 6.8).

one standard deviation of each other, thus we consider them in statistical agreement.

Given the supercells that we studied, we found a variation in hSe of approximately

0.05 Å. When using the experimental lattice parameters at ambient conditions, our best

estimate of the Se height in the collinear phase is 1.56(1) Å, in agreement with the

experimental results of Ref. [215], whereas the paramagnetic phase yields an estimation

of 1.43(1) Å, close to the experimental values presented by several works [214, 192, 217].

The determination of hSe is thus very challenging, however we can shed lights on the

reliability of first principles methods by considering it as a parameter only and by looking

at how it varies with the the other FeSe cell parameters. With this aim, we perform a

full set of QMC(opt) calculations within the paramagnetic phase and with the 4× 4× 1

supercell. In Fig. 6.8 we present the Se height curve under pressure compared between

VMC(opt) and DFT predictions. Due to the importance of weak VdW interactions, we

include also results obtained with the DF2 functional. While in the paramagnetic config-

uration DFT(PBE) is considerably far from all experimental results, a better agreement



149 Iron selenide by QMC

with Ref. [214] is displayed when the collinear configuration is simulated or by including

VdW dispersion. However, in both cases, DFT predicts a monotonic increasing behavior

of the internal parameter, in contrast with QMC and experiments [192, 214].

This discrepancy can be linked to a difference in the underlying physical description

offered by QMC and DFT methods. One can argue that the hSe trend is mainly driven by

two competing effects which arise upon pressure application. From one side, the shrink

of the inter-plane distance induces a lowering of the Se height due to the stronger VdW

repulsion. On the other hand, a contraction in the a parameter causes an increase in

hSe driven by the repulsion of the nearest Fe nuclei. In the experimental pressure range

considered [214] up to 4 GPa, the variation of c is much larger than the correspondent

a one. Therefore the lowering of hSe induced by c prevails over the a effect until ∼ 5.5

GPa, where the minimum is located. For pressure larger than this value the effect of

a dominates and hSe starts to increase again. Following this reasoning, we perform Se

height relaxation in the tetragonal FeSe at several values of a and c by keeping the volume

constant. The results are presented in Fig. 6.9. With respect to the QMC results, DFT

strongly underestimates the slope as a function of c (Fig. 6.9a) whereas an overestimation

is evident in Fig. 6.9b for the hSe versus a curve. The results are independent of the

functional employed and are not changed by a direct inclusion of VdW dispersion into the

functional. Therefore, the effect due to the shrink of a parameter is always dominant, thus

leading to the monotonic increasing behavior we observe in Fig. 6.8. This finding provides

a simple explanation of why DFT, at difference with our approach, cannot reproduce the

characteristic minimum of the hSe under pressure shown in several experiments [214, 192].

The last structural parameter we compute is the bulk modulus, extracted by fitting

the DMC(PBE0) energies with an equation of state previously used by Anton et al. [219].

The collection of ambient-pressure bulk-moduli results is reported in Tab. 6.4, in units of

GPa. For all these calculations, experimental lattice constants [215] have been used. As

for the internal parameter, we notice a very strong dependence on the magnetic ordering

enforced in the QMC determinant.

The DMC(PBE0) calculations demonstrate excellent agreement with all three experi-

ments reported if the collinear magnetic ordering is imposed, but there is less agreement

if other patterns are used instead. The hybrid functional PBE0 calculations are also in

somewhat good agreement with DMC(PBE0). On the other hand, PBE bulk moduli are

significantly lower than both experiment and the other calculations, generally predicting

bulk moduli between 7 and 10 GPa, depending only slightly on the magnetic ordering.

In this Section we presented the first full QMC prediction of FeSe structural parame-

ters. Our results display a much better agreement with experiments when compared with

DFT(PBE). This poses a strong constraint on the validity of DFT(PBE)-based investi-
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Table 6.4 – Comparison of ambient-pressure bulk moduli from experiments and various calculations with
various magnetic orderings. All calculations were performed using the room temperature experimental
structure. We notice a strong dependence of the bulk modulus on the chose magnetic orderings. At a
QMC level, the collinear structure displays the best agreement with experiment.

Source Magnetic Ord. Bulk Mod. (GPa)

Margadonna [214] – 30.7(1.1)

Millican [220] – 31

Kumar [215] – 30.9(3)

DMC(PBE0) bicollinear 26.4(8)

DMC(PBE0) checkerboard 43.1(8)

DMC(PBE0) collinear 31.2(7)

PBE0 bicollinear 27.6(1)

PBE0 checkerboard 40(1)

PBE0 collinear 29.7(2)

PBE bicollinear 7.03(3)

PBE checkerboard 8.9(2)

PBE collinear 7.3(1)

gations on the FeSe structure. Furthermore, we demonstrated a strong inter-dependence

between structure and magnetism which is evident both in the internal parameter predic-

tions and in the bulk moduli. This effect is somewhat present also at a DFT(PBE) level

for the internal parameter predictions; however, due to the discrepancy of DFT(PBE)

structure with all available experimental results, the application of QMC is unavoidable

to elucidate this connection, as we shall see in the next Section.

6.4 Magnetic properties

6.4.1 FeSe energetics under pressure

As discussed in the introduction, the true ground state magnetic configuration of FeSe

is still under intense debate and it is not clear yet whether static long-range ordering is

present or not in this compound. However, magnetic QMC calculations are performed

within periodic boundary conditions on a relatively small simulation cell and thus they

cannot describe sufficiently long-range spin fluctuations which can eventually suppress

magnetic order in the crystal, as suggested by several works [200, 221]. On the other

hand, the paramagnetic QMC state which we included in our calculations is found to be

more than 0.5 eV/Fe higher in energy than any magnetically ordered wavefunction. More
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Table 6.5 – Fe magnetic moments computed with DMC(PBE0) and DMC(opt) at different magnetic or-
derings. For sake of comparison we also included PBE0 and PBE results. All calculations were performed
using the room temperature experimental structure.

Source Magnetic Ord. Mag. Mom. (µB)

DMC(opt) checkerboard 3.134(6)

DMC(opt) collinear 3.014(8)

DMC(PBE0) bicollinear 3.518(5)

DMC(PBE0) checkerboard 3.500(7)

DMC(PBE0) collinear 3.443(6)

PBE0 bicollinear 3.492

PBE0 checkerboard 3.473

PBE0 collinear 3.433

PBE bicollinear 2.653

PBE checkerboard 2.332

PBE collinear 2.561

details about the paramagnetic calculations are presented later on in this Section. The

ground state thus seems to require large local moments on the Fe atoms.

For the experimental crystal structure, the collinear magnetic ordering is the lowest

in energy in our calculations and is observed to be the dominant short-range order ex-

perimentally [206]. If a static magnetic configuration is present in FeSe, it is also likely

to be of collinear ordering [208, 207]. The energetic cost of introducing a “defect" (spin

flip) into the magnetic order is quite small as we will see later on. Both the DMC(opt)

and DMC(PBE0) flavors result in a rather large magnetic moment on the Fe atom. For

the collinear magnetic ordering we obtain a value of ∼ 3.4 µB for DMC(PBE0), and a

slightly lower ∼ 3.1µB for the fully optimized calculations. In both cases the magnetic

moment is close to the atomic limit. Since the exchange interaction plays a major role in

determining the local magnetic moments in FeSe [222], it is not surprising the accordance

between QMC and DFT(PBE0) predictions shown in Tab. 6.5. The local treatment of the

exchange interaction in DFT(PBE) leads to an underestimation of the magnetic moment

with respect to the other methods. All these results are contained in Tab. 6.5 and they

are obtained at ambient conditions.

For the two QMC approaches we use, the energy difference between different magnetic

orderings is in agreement within statistical errors (see also Fig. 6.5), so there is good

reason to believe that the simpler and cheaper DMC(PBE0) technique is accurate.

We first focus on the DFT(PBE) calculations which are the most common in literature.
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Figure 6.10 – FeSe energies in eV/f.u. as a function of the cell volume at the DFT(PBE) level of theory.
The calculations have been performed with the software Quantum ESPRESSO [18] using a 10×10×10
k-points mesh, an energy cutoff of 75 Ry and norm conserving pseudopotentials for both Fe and Se for
all considered magnetic orderings. The reference is always taken as the energy of the ”staggered dimer“
configuration which is the DFT(PBE) ground state over the whole considered pressure range. In panel (a)
the calculations are performed with the relaxed values of hSe whereas on panel (b) we use experimental
values [215] of the internal parameter.
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In Fig. 6.10 we report the DFT(PBE) energy differences as a function of cell volume for

different magnetic orderings. It is apparent that the relative energies are quite different

from the DMC ones reported in Figs. 6.11a and 6.11b. The DFT(PBE) energy landscape

is considerably more flat (see also Fig. 6.11d) and, moreover, even the lowest magnetic

phase is different among the two methods. DFT(PBE) predicts as ground state the

“staggered dimer” configuration with an energy gain of ∼ 0.006 eV/atom with respect to

the collinear phase over the whole considered pressure range. This is confirmed by several

recent calculations [216, 223, 224]. On the other hand the DMC ground state turns out

to be the collinear configuration independently from the value of the Se height.

It appears that hybrid DFT calculations in the PBE0 approximation (Figs. 6.11e and 6.11f)

obtain reasonably good magnetic energy differences in comparison to DMC; thus this

functional may be capturing some of the correct physics for the magnetic properties of

this material. However, the PBE0 functional predicts an insulating gap [225] for FeSe

independently from the chosen magnetic phase in contrast to DMC and experiment, as

quantitatively demonstrated later on in this Section.

The validation of the DMC(PBE0) energy differences with the more accurate DMC(opt)

allowed us to apply this method for an extensive investigation of the FeSe energy landscape

as a function of pressure at different magnetic orderings. The idea is to find a common

trends which could better elucidate how the magnetic ground state of FeSe evolves when

the crystal structure is modified. A particular care is taken of the internal parameter
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hSe due to its importance for superconductivity [192]. Therefore energetics has been

calculated with method relaxed internal parameter (ztheory
Se ) as well as with experimental

values of the Se height (zexp
Se ), in order to assess its impact.

Figure 6.11 – FeSe relative energies as a function of pressure with fixed values of hSe for different
levels of theory. For each calculation (QMC, PBE, and PBE0): (Right panel) Total energies for 8
f.u. cell for various magnetic orderings, as a function of the cell volume, choosing experimental [214]
values of hSe. (Left panel) Same as right, but choosing optimized values of hSe. For the top QMC
plots, energies are referenced to the collinear energy at around 77 Å3 which corresponds to ambient
pressure. The DFT calculations are referenced to the hSe minimum energy for that type of calculation.
DFT(PBE) calculations are performed with the Quantum ESPRESSO [18] package with fully converged
k-point mesh and norm conserving pseudopotentials. The DFT(PBE0) results are obtained from fully
converged calculations performed with the Crystal [25] code using the BFD pseudopotentials as QMC.
The DMC(opt) paramagnetic energies are ∼ 0.85 eV/f.u. higher than the reference collinear energy (see
Tab. 6.6) and they thus not reported here.

Fig. 6.11 summarizes all our energy results with different computational methods.

Finite-size effects and other source of errors in DMC(opt) and DMC(PBE0) are addressed

with the techniques explained in Sec. 6.2.4. In our investigation we include also the fer-

romagnetic phase with all spin aligned and the configuration labelled by “collinear, flip
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1” which is obtained by introducing one defect, i.e. spin flip, in the collinear ordering.

Under pressure, the checkerboard, ferromagnetic, and staggered dimer magnetic or-

derings rise in energy compared to the lowest energy collinear ordering (Fig. 6.11a and

Fig. 6.11b). On the other hand, the stripe-like orderings, including the bicollinear and

collinear orderings with defects converge with applied pressure.

From Fig. 6.11c and Fig. 6.11d the failure of PBE in capturing this trend is appar-

ent. PBE0 magnetic energies are reasonably close to the DMC results (Fig. 6.11e and

Fig. 6.11f). However, as mentioned before, they cannot be considered reliable due to the

wrong estimation of conducting properties of FeSe [225]. This is not the case for our

ground state QMC configuration, as demonstrated by the gap calculations discussed in

the following.

We calculate the direct optical gap at the DMC(PBE0) level by promoting the highest

energy orbital in the Slater determinant part of the trial wavefunction to the next excited

state orbital at the same twist condition. This constructs a wave function ansatz for an

electron-hole excitation and the direct gap is obtained by taking the energy difference

between the ground state and excited wavefunctions. The results are shown in Fig. 6.12.

Interestingly, the DMC(PBE0) gap is 0 within statistical uncertainties for collinear or-

derings despite the fact PBE0 estimates a rather large gap for all orderings [225] and the

determinant orbitals are frozen to the PBE0 ones. The closing of the gap is thus solely

derived from correlation effects introduced with the Jastrow factor. Experimentally [226],

the gap is no more than 80 meV at any point in the reciprocal space, which is consistent

with our results for the bicollinear and collinear magnetic ordering. Only the checkerboard

state is gapped according to QMC predictions.

Given all this data available to us, we can determine some properties that are robust

to the finite-size errors and to the uncertainty in hSe present in our calculations. The

first one is that the relative energetics of magnetic orders changes strongly as a function

hSe and pressure. In DMC and PBE0, which would a priori be expected to be more

accurate, the collinear and bicollinear orders become closer in energy as with increasing

pressure. According to DMC, this effect is robust against hSe variations, depending mainly

on the change in the relative magnetic energies as a function of pressure. Furthermore,

the energetic cost of reversing a single spin in the collinear ordered state, follows the

bicollinear energy quite closely. Because this cost decreases with pressure, we can surmise

that magnetic fluctuations become more energetically available as pressure is increased.

In order to be confirmed, this result requires further experimental investigations.

It is evident from the energetics and gap calculations presented in this Section that

within FeSe there is a strong interplay between structural variations and spin degrees of

freedom. On the other hand, the direct gap calculations shows that the latter are also
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Figure 6.12 – Direct optical gap calculated by promoting an electron to the next excited orbital with the
DMC(PBE0) method at different twist conditions. Both collinear and bicollinear configurations displays
a vanishing gap in agreement with experimental outcome. This introduces a clear distinction with the
simple AFM checkerboard state which is has a gap of ∼ 0.2 eV.

tightly coupled with the charge mobility in the system. This complex interplay between

several effects occurring in FeSe is discussed and elucidated in Sec. 6.5 of this Chapter.

6.4.2 Comments on the paramagnetic phase

At ambient conditions, no experimental evidence of a static magnetic ordering has been

found in FeSe. Several theoretical investigations tried to understand the origin of this

paramagnetic phase. DFT and lattice model calculations [216, 227] surmise that the

paramagnetism in this compound originates from the frustration derived due to the com-

petition of several spin fluctuations at different wavevectors. The claim of an emergence

of static long-range order at ∼ 0.8 GPa [208, 207, 205] calls for further investigations on

this scenario. However, the coexistence of magnetism and superconductivity above 0.8

GPa is unconventional [209] and sorely needs further investigations. The paramagnetic

phase of FeSe remains interesting since it is the ground state at ambient conditions (< 0.8

GPa) and may give important insights on the emergence of the magnetic phase.

We simulate with QMC the paramagnetic phase of FeSe by constraining the determi-

nant orbitals to be the same for ↑ and ↓ spin channels both at the preliminary DFT level

and at optimization stage. However, as previously mentioned, this configuration shows

a much higher energy with respect to magnetic configurations, independently from the

chosen supercell size and the QMC method used. We present a more quantitative proof
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of this outcome in Tab. 6.6, where we show the energy differences of the paramagnetic

phase with the AFM checkerboard and collinear configurations compared between dif-

ferent computational methods. QMC(opt) calculations are performed with the standard

setup. The inclusion of dispersion along the z-axis using a 2 × 2 × 2 supercell does not

modify the results.

The QMC energies show an energy difference between paramagnetic and magnetic con-

figurations which is much larger (∼ one order of magnitude) with respect to simple DFT

with local functionals (LDA and PBE). A possible explanation of the large discrepancy

can be attributed to the over-delocalization of valence electrons, a well known deficiency

of local density functionals (such as LDA and GGA). This is one of the main problems

in the simulation of strongly correlated (and therefore localized) quantum systems with

DFT. Within QMC, this tendency is partially cured thanks to a more accurate treatment

of the many-body effects involved in the exchange mechanism. Therefore exchange-driven

magnetic orders are considerably more stable, as apparent from our results in Tab. 6.6.

Hybrid functionals mix the local DFT exchange energy with the non-local exact Hartree-

Fock exchange. Exchange is therefore strongly enhanced within this technique. With

the PBE0 hybrid functional [225], the energy of FeSe magnetic configurations are lower

than those of the paramagnetic configuration by about a factor 2 with respect to QMC

outcomes for both checkerboard and collinear orders. As expected, we find QMC results

to lie in between results obtained using an over-delocalized framework such as PBE, and

results obtained using a theory which includes exact exchange such as PBE0.

In order to validate the aforementioned frustration scenario it is important to under-

stand whether our paramagnetic wavefunction is able to simulate the emergence of sizable

local magnetic moments, which would imply the presence of spin fluctuations in the com-

pound.

Table 6.6 – VMC(opt) and DMC(opt) energy differences between magnetic states (Echb for the simple
AFM and Ecol for the collinear state) and the paramagnetic configuration (Epara). The tetragonal state
is assumed using the experimental geometry [214] at ambient conditions. DFT(PBE) and DFT(LDA)
calculations have been performed with the Quantum ESPRESSO [18] software.

Source Echb-Epara [eV/Fe] Ecol-Epara [eV/Fe]

DFT(PBE) -0.192 -0.244

DFT(LDA) -0.099 -0.136

DFT(PBE0) [225] -1.425 -1.45

VMC(opt) -0.269(10) -0.5851(9)

DMC(opt) -0.765(20) -0.843(20)

The simplest estimator for probing the presence of local magnetic moments is the
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Figure 6.13 – Histogram of the atomic spin distribution function evaluated on the electronic configu-
rations sampled during the QMC simulation. The mixed estimator formalism has been employed. Both
functions are strongly peaked around 0, thus proving that no local magnetic moments are forming within
paramagnetic FeSe as described by the QMC method.
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atomic spin distribution function. Notice that we consider the spin conventionally aligned

along the z-axis. This function is evaluated using a post-processing tool which analyzes

the ensemble of electronic configurations sampled during the QMC simulation and the

final results are obtained using the mixed estimator formalism outlined in Sec. 2.4.2. In

Fig. 6.13 we present the spin distribution function obtained with our best paramagnetic

variational ansatz projected onto Fe (left panel) and Se (right panel) atoms. We notice

that this function is strongly peaked around 0 for both atomic species. If local magnetic

moments were forming within our paramagnetic state, we would have instead expected

to have a bimodal distribution with two clear peaks around the values of ±M with M

the magnitude of the local magnetic moment. Given the distribution in Fig. 6.13, we can

conclude that our paramagnetic wavefunction is not sufficient to support the emergence

of local magnetic moments.

In order to have more insights into this behavior, we compute the spin-spin correlation
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Figure 6.14 – Spin-spin correlation function GSz(Ri, Rj) projected onto Fe sites in the FeSe paramag-
netic phase; this observable has been evaluated by assuming the translational invariance of the atomic
lattice and with the mixed estimator formalism. The decay of GSz(Ri, Rj) is very sharp and points out
that the spin fluctuations simulated by our approach are very short-range.
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function GFe
Sz(Ri,Rj) = 〈Sz(Ri)Sz(Rj)〉 among Fe sites, where Sz(Ri) is the spin operator

along the z axis associated with the i-th Fe site located at Ri. The evaluation of the spin-

spin correlation function requires the average spin 〈Sz(Ri)〉 associated to the i-th site; we

compute this quantity as the difference between the number of ↑-spin electrons and ↓-spin

electrons falling within a sphere of radius rc centered on the ion during the QMC random

walk. rc is chosen to be close to the atomic radius of Fe. We verify that this choice gives

the correct atomic charge for both Fe and Se atoms. The final values of these observables

and an estimation of their error bars are obtained by averaging over the Monte Carlo

generations and using the mixed estimator formalism (see Chap. 2).

We find that GFe
Sz(Ri,Rj) has a very rapid decay, vanishing already at the 2nd neigh-

boring atom. The results are shown in Fig. 6.14 for our best paramagnetic wavefunction.

This behavior is likely due to the fact that our variational ansatz takes into account spin

fluctuations only within the Jastrow factor whereas the determinant can only describe

a static long-range order. Multiple single determinant wavefunctions such as the Pfaf-

fian [39] have been devised in order to accommodate distinct spin configurations within

the same function. In this way, spin fluctuations can be consistently incorporated within

the full QMC variational ansatz. It is probable that such an ansatz could enhance the

role played by magnetic fluctuations in our simulations of FeSe. This would disfavor the
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long-range magnetic orderings with respect to the paramagnetic state and may lead to

a change in the ground state configuration at ambient conditions, producing results in

agreement with experiments.

Figure 6.15 – Spin structure factor of the 4 × 4 × 1 paramagnetic supercell at ambient conditions
restricted to the reciprocal space of the Fe sublattice. The values in a.u. of the structure factor for the
most important wavevectors ( (0, π), (π, 0) and (π, π) ) are reported in the graph.
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Despite the absence of localized magnetic moments, our paramagnetic state displays a

value of the on-site spin-spin correlation function GFe
Sz(0) = 2

√

〈S2
z (0)〉 of 2.016(1) µB. We

demonstrated that the localization of like-spin particles is not captured by our ansatz;

hence this non-negligible value of the on-site spin fluctuations solely derives from the

superexchange mechanism. In order to understand how magnetic fluctuations at different

wavevectors contribute to this mechanism, we compute the Fe spin structure factor. This

is defined as the Fourier transform of the spin-spin correlation function restricted to the

Fe sublattice:

F Fe(q) =
1
NFe

∑

R

eiq·R〈Sz(Rref)Sz(|R −Rref |)〉Fe (6.2)

where we used the translational invariance of the crystal lattice by taking the atom located

at Rref as reference. In Fig. 6.15 we show this quantity for the 4 × 4 × 1 FeSe supercell

at ambient conditions. The wavevector (π, π) corresponds to the simple AFM checker-

board pattern, whereas the wavevectors (0, π) and (π, 0) are associated with collinear spin

fluctuations along the x and the y directions respectively; the values of F Fe(q) for these

wavevectors are reported on the plot. Taking into account the aforementioned limitations

of our ansatz, it is however apparent from Fig. 6.15 that there is a strong competition be-

tween several magnetic fluctuations; interestingly, at ambient conditions the fluctuations
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along the π direction in Fourier space display the largest value of the spin structure factor

– in particular the (π, π) wavevector represents the dominant contribution – whereas the

collinear fluctuations show a lower value. We can elucidate this behavior by looking at

Figure 6.16 – Spin structure factor of Fe sublattice as a function of the cell volume for the (π, 0) and
(π, π) spin fluctuations corresponding to collinear and checkerboard orderings respectively.
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the values of F Fe(q) for collinear and checkerboard orderings as a function of the cell

volume which are shown in Fig. 6.16. We notice that the competition between these two

competing orderings increases as the cell volume increases; the maximum level of frus-

tration is reached at a cell volume which corresponds to ambient conditions. This is in

agreement with the relative energetics presented in Fig. 6.11a, where the checkerboard

state becomes closer in energy to the collinear configuration at larger cell volumes. With

our paramagnetic solution we are therefore able to capture the competition among differ-

ent orderings within the compound based only on the superexchange mechanism. These

findings support the idea that magnetic frustration might be the cause of the disappear-

ance of static long-range ordering below 1.2 GPa, as confirmed by all experimental results

available nowadays. Despite the interest of these results, the aforementioned limitations

of our paramagnetic ansatz are evident in the fact that we are not able to predict the

dominance of the collinear magnetic fluctuation, as clearly seen in neutron scattering

experiments [206].
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6.5 Interaction between structure and magnetism

6.5.1 Relevance of stripe-like magnetic orderings

From the energetic properties explained in the previous Section, we note two classes of

magnetic order in FeSe: ones which are stripe-like, and ones which are not stripe-like. The

stripe-like orderings (collinear and bicollinear mainly) converge in energy with pressure,

while the checkerboard and staggered dimer pattern increases in energy relative to those

orderings. Similarly, the gap calculated in DMC(PBE0) distinguishes between different

orderings, with metallic character in the stripe-like ordering.

There is hence an evident interplay between magnetic configurations and structural

changes due to pressure application. However this effect strongly depends on the magnetic

ordering imposed on the compound. In this Section we relate this different behavior to

the electronic properties of FeSe; this allows us to provide a simple explanation to this

behavior based on the Hund’s coupling rule. In order to characterize the differences

between the spin channels, we evaluate the local charge compressibility of the Fe sites:

〈(ni,σ−〈ni,σ〉)2〉, where niσ is the number of electrons within a Voronoi polyhedron around

the ith Fe site of spin σ. Larger values of the compressibility indicate electrons are more

likely to hop between atoms. For a Fe atom with net ↑ spin, the ↑ electrons are labeled

majority electrons and the ↓ minority, and vice versa for Fe atoms with net ↓ spin.

In Fig. 6.17, these results are presented as a function of pressure for the QMC(PBE0)

method using mixed estimators. For all magnetic orders, the majority spin is very similar

and shows a low local charge compressibility, while the minority spin is different between

different magnetic orders, and its local charge compressibility is larger than the majority

channel by around 0.3n2
e (electron number squared). This suggests the minority electrons

are more mobile, however, their ability to hop is affected by the local magnetic order.

For the stripe-like orders, the minority electrons are least constrained, and their minority

channel compressibility is about 0.1n2
e more than the checkerboard and staggered dimer

state. This measure of mobility seems to be correlated with the optical gap calculations,

which predict that the checkerboard pattern induces a gap, in contrast to the other

magnetic orders.

We turn our attention now to the single-particle orbital occupations. The standard ap-

proach for computing this quantity is through the diagonalization of the one-body reduced

density matrix computed with the QMC variational wavefunction. This method is used

with the QMC(PBE0) approach. For the QMC(opt) technique we implemented instead

a different methodology which is extensively described in Appendix A. In Fig. 6.18, we

present the occupations of the d orbitals in the minority spin channel for different mag-

netic states. Notice that for the paramagnetic state the two channels are obviously equiv-
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Figure 6.17 – Charge variance – in units of number of electrons squared – for different magnetic orderings
in the majority and minority spin channels as a function of cell volume. This graph illustrates that the
minority spin channel is more mobile whereas the checkerboard ordering’s electrons are more constrained
to a given iron site.
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alent. QMC(opt) predictions are Fig. 6.18a while the QMC(PBE0) ones are in Fig. 6.18b.

The occupations of the checkerboard state from QMC(PBE0) are strongly peaked on the

3z2 − r2 orbital whose highest probability regions are placed outside the Fe plane along

the z axis. From Fig. 6.18b is evident that the determinant optimization has an impact on

the electron occupations. Whilst the collinear case is in good accordance with the simpler

QMC(PBE0) approach, the checkerboard case shows a considerably smoother behavior.

However, the qualitatively trend is maintained with the out-of-plane 3z2−r2 orbital being

the most occupied at variance with all other considered magnetic configurations.

This finding gives a simple explanation for the differences in the local charge com-

pressibility: the checkerboard pattern leads to a less hybridized electronic arrangement,

as apparent from Fig. 6.19c. This idea can be confirmed by checking the off-diagonal

one-body density matrix elements between Fe atoms with parallel and antiparallel net

spins, as shown in Fig 6.19a for the QMC(PBE0) method. The atomic orbitals are more

hybridized between parallel spin Fe atoms for the stripe-like orders. The charge degrees
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Figure 6.18 – d orbitals occupation extracted from QMC simulations with the mixed estimators. In the
left panel we show the QMC(opt) occupations computed with the procedure explained in Appendix A
while in the right panel we present the QMC(PBE0) occupations.
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of freedom, which are mainly the minority spins from the Fe, interact strongly with the

magnetic ordering. This effect also interacts with the net magnetic moment and on-site

correlations as shown in Fig. 6.19b.

6.5.2 Connection with Hund’s rule coupling

The importance of Hund’s coupling in tuning correlation effects of multiband materials

has been extensively demonstrated by means of dynamical mean field theory (DMFT)

calculations [228, 229, 230]. These results highlighted its role in determining the bad

metallic behavior in iron-based superconductors [231], which are therefore sometimes re-

ferred as Hund’s metals. DMFT studies of BaFe2As2 have predicted that kinetic energy

should be lower in the paramagnetic state, although the total energy is lower in the spin-

polarized states due to Hund’s coupling [232]. Correspondingly, we find that comparing

the paramagnetic state and collinear state, the kinetic energy is 10.7(4) eV/f.u. larger in

collinear, while the total energy is ∼ 0.85 eV/f.u. lower for collinear (see Tab. 6.6). Also

due to Hund’s coupling, DMFT studies have predicted that the high-spin state should
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Figure 6.19 – Panel (a): Magnetic moments inside each iron’s Voronoi polyhedron. Panel (b):
Magnitude of on-site correlations, measured by |Cov(n↑, n↓)|/[Var(n↑)Var(n↓)]1/2 where nσ is the number
of electrons of spin σ within a reference iron’s Voronoi polyhedron. Panel (c): Hybridization of different
orderings, as measured by an average of the off-diagonal elements of the one-body density matrix, broken
down by interactions between antiparallel (Antipar.) and parallel (Par.) aligned irons.
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be the only highly probable state [233]. Correspondingly, we find that the iron magnetic

moment fluctuates around 3.4 µB, with a standard deviation of 1.5 µB.

A simple picture based on Hund’s coupling can explain the energetics and other proper-

ties presented in the results section. Hund’s rules dictate that for an atom with a partially

filled shell, we expect the electrons to have total spin S that maximizes the multiplicity

2S + 1. This is consistent with our computed magnetic moment, which finds that the
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Figure 6.20 – Diagrams depicting the occupations of the d-orbitals of a reference iron, one of its
neighbors with parallel net magnetic moment, and another neighbor with antiparallel magnetic moment.
The minority channel is spin down for the top two, and is spin up for the last. The minority electron
on the reference atom is most likely to hop to a neighbor, for example, the greyed out down electron on
dz2−r2 . It may easily hop to its parallel neighbor, which may fill its dx2−y2 orbital as suggested by the
grey box. It may not hop to any of the orbitals of the antiparallel neighbor, since the down spin channel is
filled. Any hopping from the reference iron to its antiparallel neighbor must occur in the spin-up channel,
which consequently violates Hund’s rule for the reference iron.

majority channel is mostly filled, bringing the moment to around 3.1-3.4 µB. The spin

occupation of the d-states in a reference iron is diagrammatically shown in the top row

of Fig. 6.20. Also due to Hund’s coupling, the electron that is most likely to hop to

nearby iron atoms would be the electron in the minority channel, to keep a large S. As

illustrated in Fig. 6.20, this minority channel is already filled for neighboring irons that

are antiparallel, so only majority spin electrons can hop to those atoms. Conversely, mi-

nority electrons can hop to neighboring parallel irons, since that spin channel is not filled.

Thus, irons with parallel spins allow the minority electrons to more easily hop about the

aligned iron sites, therefore decrease the kinetic energy. As seen in Fig. 6.18 the magnetic

ordering affects the occupation of the d states, hence affects the labeling of the states in

Fig. 6.18, but the basic idea is unchanged.

While the minority spins require at least some parallel iron magnetic moments, the large

localized magnetic moments also interact antiferromagnetically, leading to a competition

between these two mechanisms. As a compromise, antiferromagnetic configurations with

ferromagnetic chains emerge as the lowest energy configurations.

This picture unifies many of the observations from our calculations. The checkerboard

state is distinguished from the other states by its lack of parallel nearest neighbors, similar

to how the ferromagnetic state is distinguished by its lack of antiparallel neighbors. These
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two extremes are higher in energy, and are disfavored as pressure increases the importance

of Fe-Fe interactions. Because the checkerboard has no parallel nearest neighbor, its iron d-

electrons are more trapped at a single site, leading to a low charge variance, and states that

primarily occupy the dz2−r2 orbital. All stripe-like states have a combination of antiparallel

and parallel nearest neighbors, and allow the electrons to delocalize along the irons chains,

leading to higher correlations, higher variance, and more Fe-Fe hybridization. Although

the staggered dimer ordering is energetically competitive at low pressures, its energy,

charge variance, and magnetic moment are similar to checkerboard, and at high pressures,

becomes energetically unfavorable just as the checkerboard ordering does. Although the

staggered dimer does allow some delocalization between the dimered parallel spins, the

itinerant spins are still trapped on the dimers, and therefore this state’s energetics follows

the checkerboard behavior at higher pressures. This competition of interactions sets up

a fine balance between many qualitatively different magnetic configurations. Parameters

in the structure can tilt this balance one way or another, leading to a strong magneto-

structural coupling. This is evident both from the strong magnetic dependence of the

bulk modulus seen in Tab. 6.4 and from the dependence of the Se height on magnetic

ordering.

6.6 Conclusions

In this Chapter we presented an extensive QMC investigation of FeSe. This material is

one of the most studied compounds among FeSCs, however its ground state properties

and its highly non-trivial behavior upon pressure application have not been completely

elucidated yet. Our focus is on the normal state of this material, a fundamental step

towards the description of the superconducting phase. We demonstrate the robustness

and reliability of our approach by combining the results of two different yet complementary

QMC flavors which have been carefully compared in this work. All main source of errors,

such as finite-size effects and time step/lattice space errors in diffusion Monte Carlo have

been addressed in great detail and shown to be small enough to distinguish among different

magnetic configurations of FeSe.

We performed, for the first time, a fully QMC structural relaxation of this compound.

With a single comprehensive ab initio framework, we are able to describe the main building

blocks of FeSe physics, yielding an overall prediction of structural parameters as well

as bulk modulus which is considerably improved with respect to previous DFT based

investigations. We showed that the sole internal parameter, namely the Se height above

Fe planes, is very sensitive to finite-size effects, but it can be successfully used as a tunable

parameter to understand which ingredients – mainly Van der Waals forces and in-plane
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electron correlation – are missing from the DFT description to yield a correct prediction.

In the second part of this Chapter we investigate several long-range magnetic patterns

as a function of pressure which are possible candidates for the ground state of FeSe. At

variance with DFT(PBE), both QMC flavors predict the collinear state as the lowest

energy configuration over the whole pressure range; not only the ground state, but also

the overall energy trend is qualitatively different at QMC level. By focusing on the energy

differences relative to the collinear state, we identified two distinct magnetic classes: the

“striped” patterns characterized by chains of like spin particles which are converging under

pressure, and non-striped phases (such as simple AFM checkerboard pattern and the

ferromagnetic phase) whose energy difference with respect to the collinear state increases

when pressure is applied. Even though our wavefunction cannot support the formation

of localized magnetic moments, the paramagnetic spin structure factor displays a strong

competition among collinear and non collinear paramagnetic spin fluctuations. We clearly

find that the contribution to spin fluctuations of the simple AFM checkerboard phase

increases under pressure with respect to the collinear, similarly to what has been found for

the relative energetics. This scenario points to the role of spin fluctuations in disfavoring

the long-range magnetic ordering in FeSe at ambient conditions.

These findings, and the fact that only striped patterns are gapless in according to

experiments, demonstrate a strong link between magnetic, structural and charge degrees of

freedom in the material. This scenario can be elucidated by looking at the charge mobility

(or charge variance) in the system; our results show that, for the striped patterns, the

minority electrons on the high-spin Fe state are considerably freer to move with respect to

configurations without aligned spin chains. This delocalization effect is strong enough to

change the occupation of atomic orbitals depending on the magnetic ordering, therefore it

is larger than the crystal field splitting of the orbitals. This behavior is in agreement with

the prescriptions imposed by the Hund’s coupling rule for like and unlike spin particles.

We find therefore that a simple scenario based on the Hund’s coupling can reconcile most

part of our results, providing a strong link with previous studies carried out with DMFT.

The work presented in this Chapter demonstrated that the QMC approach is mature

enough to attempt an ab initio description of unconventional superconductivity within

the prototypical FeSe compound.



Chapter 7

Conclusions and outlook

In this thesis we developed and applied several original improvements to the ab initio

quantum Monte Carlo (QMC) approach. We aimed at increasing the performance and

capabilities of these stochastic first principles methods towards the description of more

realistic quantum systems whose simulation by QMC will be possible using the next

generation exascale supercomputing machines.

The new techniques presented here have been implemented and tested within the Tur-

boRVB code [1], a comprehensive and self-contained software package capable of perform-

ing QMC calculations on a wide range of systems. This manuscript has been organized

following the chronological order of the work performed during the thesis, starting from

molecular cluster simulations and evolving towards a more reliable and cheaper QMC

description of crystalline solids.

Part 1: QMC methods for open systems

In the first part of this manuscript we focused on finite systems. In this field, the ac-

curacy of QMC makes this method a direct competitor of advanced quantum chemistry

approaches such as coupled cluster techniques, but QMC has the great advantages of a

better scaling with the number of particles and almost no parallelization overhead thanks

to the stochastic nature of its principal algorithms. The main ingredient of any ab initio

QMC calculation is the variational ansatz. In Chap. 2 we describe the powerful Jas-

trow antisymmetrized geminal power (JAGP) functional form. The JAGP wavefunction

is the ab initio realization of the resonating valence bond theory, an alternative to the

well-known molecular orbital theory for the description of chemical bonds. Being the two-

electron generalization of the Slater determinant, the JAGP evaluation cost displays the

same N3 scaling and, furthermore, it contains the Hartree-Fock determinant as a special

case. These features combined with the use of a Gaussian localized single-particle basis

168
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set enable a fine tuning of the level of correlation in the system by keeping a flexible and

very compact representation.

Flexibility is also crucial in order to obtain a well optimized wavefunction. Indeed, a

wavefunction as close as possible to the true ground state is unavoidable since the main

QMC algorithms used in this work – variational Monte Carlo (VMC) and lattice regu-

larized diffusion Monte Carlo (LRDMC) – obey the well-known zero-variance principle.

To this purpose, we need two ingredients. At first, a good starting guess which, in our

implementation, is the DFT(LDA) single determinant wavefunction; this is obtained with

a built-in DFT package which uses exactly the same setup (basis set, pseudopotential) as

the QMC part. The second ingredient is an efficient wavefunction optimization method.

We used an energy minimization scheme based on the stochastic reconfiguration (SR)

technique which allows us to optimize up to 104 variational parameter at the same time

using Monte Carlo integration. The SR method requires us to compute the derivatives of

a few quantities, such as the wavefunction and the local energy, with respect to the whole

set of parameters, thus the number of inputs (variational parameters) is several order of

magnitude larger than the number of outputs (wavefunction and local energy). We at-

tempt to solve this problem by the adjoint algorithmic differentiation (AAD), a technique

which allows the computations of any number of derivatives of a function implemented

as a computer program, with the same efficiency as the function itself. AAD also adds

modularity and flexibility to the QMC code. In fact, the implementation of a new vari-

ational ansatz only requires one to devise an efficient algorithm to evaluate it, whereas

its derivatives are automatically computed with practically no coding effort. This aspect

enables an efficient and quick implementation of several important wavefunction forms

which can considerably expand the capabilities of the TurboRVB code. They include the

Pfaffian pairing form [39], the generalization of JAGP to multiple orthogonal geminals,

known as the antisymmetric geminal product [234], or even multideterminantal CI-like

wavefunctions [9].

Despite its efficiency, QMC remains considerably more expensive with than effective

one-electron methods such as DFT, in particular when tackling large molecular clusters.

A crucial step to cure this issue is the reduction of the basis set size. In Chap. 3 we

presented an original scheme for effectively decreasing the number of basis-set parameters

with a negligible loss of accuracy. Our procedure allows us to generate optimal hybrid

orbitals defined as eigenvectors of a suitably projected density matrix. We showed that

the geminal embedded orbitals (GEOs) display better performance with respect to the

standard natural orbitals and apply them to the paradigmatic case of the H2O molecule.

With ∼ 2 times fewer parameters in the basis, we are able to reach a total energy which

is only ∼ 1 mHa higher than our best ansatz as well as very close to the best results
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published in the literature.

Another useful feature of GEOs is that they are fully portable to larger systems. We

transfer them to the protonated water dimer H5O
+
2 , a simple but extensively studied

model of proton transfer (PT) reactions in liquid water. Due to its very sensitive thermal

behavior – responsible for the abnormally high proton diffusion along the hydrogen bond

network – PT requires an accuracy in the energetics lower than the chemical accuracy

of 1 Kcal/mol and is thus very difficult to describe with single-particle theories such

as DFT. We demonstrated that our framework is able to reach this accuracy and to

reproduce, within the statistical error, energetics and structural properties as predicted

by the quantum chemistry “gold standard” CCSD(T). However, as shown by a test on a

larger model of PT, QMC is able to simulate much larger clusters than CCSD(T), which

suffers from a scaling of ∼ N7 with the number of electrons.

Figure 7.1 – Larger proton transfer cluster composed by 6 H2O molecules and one excess proton. This
model fills the first solvation shell of the Zundel ion.

These very encouraging results open the way to several future directions in the research

on PT, whose exact microscopic mechanism still represents an open problem in chemistry

with important applications, for instance, in the design of fuel cells:

• The most direct continuation of the work presented in Chap. 3 is the study of sol-

vation effects on the zero-temperature energy landscape and static proton transfer

barriers of H5O
+
2 . By employing the same setup, we can simulate larger molecular

clusters such as the one shown in Fig. 7.1, which completes the first solvation shell

of the Zundel ion. The investigation of larger clusters is unavoidable in order to un-

derstand the best simulation model accounting for all necessary physical ingredients

needed by PT.

• Once the aforementioned model has been identified, the next step will beto apply
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the recently developed ab initio molecular dynamics (AIMD) technique [8] based on

Born-Oppenheimer QMC forces to carry out finite-temperature calculations at ambi-

ent conditions. In this way, QMC predictions of experimentally available quantities

– for instance the oxygen-oxygen and oxygen-hydrogen radial distribution functions

or the PT diffusion coefficient – would be possible. If the accuracy shown by QMC

at zero-temperature is confirmed within finite temperature simulations, our tech-

nique will likely be able to achieve an agreement with experimental results on PT

which is still missing nowadays. Moreover, the simulation of more than 128 H2O

molecules by QMC-AIMD will be feasible in the near future. This would enable us

to directly access concerted proton transfer reactions within a sufficiently large por-

tion of the hydrogen bond network. Hence we believe that an accurate simulation

of the microscopic PT mechanism based on quantum Monte Carlo is within reach.

Part 2: QMC methods for periodic systems

The second part of this thesis work was devoted to the implementation of long-established

as well as original techniques for an accurate description of extended periodic systems.

To this purpose, QMC is one of the few highly correlated ab initio techniques effectively

capable of predicting physical properties of realistic solids. In Chap. 4, which possesses

the same structure as Chap. 2, we explained the most important modifications needed

by the QMC algorithms for working with extended systems. On one hand, they come

from the fact that the single-particle basis orbitals for periodic systems need to satisfy the

well-known Bloch theorem, thus requiring complex-valued functions. Switching from real

to complex arithmetic implied a considerable coding effort which concerned every step of

a typical QMC run: the DFT(LDA) initial calculations, the wavefunction optimization as

well as the diffusion Monte Carlo algorithm. On the other hand, solids must be simulated

within appropriate supercells. This leads to the generalization of the concept of a k-

point to its many-body equivalent: the twist condition. With a smart choice of the twist

conditions for ↑ and ↓ spin particles we have been able to write the determinantal part

of our ansatz in a twist independent way, thus enabling the full optimization of multiple

twist conditions at the cost of a single point.

The use of many twists is indeed crucial to reduce finite size (FS) effects on the energy

and other observables coming from the one-body part of the quantum Hamiltonian. In

fact, twist-averaged boundary conditions (TABC) [162], the most important method de-

vised to this purpose, is based on averaging over several twists. In Chap. 5 we presented

two alternative approaches to this technique, all based on the concept of twisted boundary

conditions. The first one is the exact special twist (EST) method devised to find values

of the twist condition reproducing the mean-field infinite-size limit of the energy with an
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arbitrary numerical accuracy. By studying several paradigmatic metallic systems (bcc

hydrogen, bcc lithium and β-tin silicon), we showed that the EST method, with a single

twist, performs similarly to TABC for total energy extrapolation, whereas it converges

slightly slower to the thermodynamic limit for the more delicate case of ionic forces. The

second method, the flavor twisted boundary conditions (FTBC) approach, is an evolution

of TABC based on an approximate mapping of the Hamiltonian defined on a large super-

cell into the Hamiltonian of a smaller cell. In principle, this should go beyond one-body

FS corrections; however, the quality of the approximation made by FTBC is not sufficient

to suppress the diverging 1/q term in the Coulomb potential. Hence, the FTBC method

produces results similar to those obtaine using the standard TABC method in curing FS

errors.

The evolution of the TurboRVB code to treat solids with non-trivial twist conditions

paves the way to a vast amount of possible applications, ranging from the large domain of

low-energy phase transitions requiring an accurate treatment of the Brillouin zone sam-

pling – for instance high-temperature superconductivity – to molecular dynamics simu-

lations of disordered liquids – such as hydrogen, water and biological systems – where

FS effects are extremely relevant. As a direct continuation of Chap. 5, it is important to

test the EST method with more extensive molecular dynamics simulations to understand

whether we can generally assume that the EST value varies only a little from one sampled

configuration to another. On the other hand, since we noticed that the EST values do not

appreciably depend on the reference mean-field method (see Tab. 5.2), we can conceive

an automatic determination of the EST by using the simple and extremely cheap Hartree

method as reference. In this way EST can be computed “on the fly” at each configuration

in the dynamics.

The developments of Chaps. 4 and 5 will be likely used in the continuation of the work

presented in Chap. 6. This is devoted to the application of continuum QMC for solids to

high-temperature superconductivity. In collaboration with the group of Lucas K. Wagner

at the University of Illinois, Urbana-Champaign, we studied the structural and magnetic

properties of the normal state of iron selenide (FeSe) by means of two complementary

QMC flavors. We show that QMC is able to considerably improve structural predictions

with respect to previous DFT-based studies. The overall energetics of different magnetic

orderings as functions of pressure are also found to be qualitatively different. In this

respect, we demonstrated a strong coupling between the structure and the magnetic or-

dering in the system; in particular, we distinguished between two magnetic configurations:

the collinear patterns whose energies become degenerate as pressure is increased, and the

non-collinear orderings which become more different in energy for larger pressures. We

elucidated our results on energetics by studying the electron mobility and noticed that it
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is mainly driven by minority spin electrons, which are more mobile in the collinear config-

urations. The minority electrons simply obey the Hund’s coupling rule, a straightforward

application of which allows us to reconcile most of our findings.

Our successful investigation on the normal state of FeSe opens several interesting re-

search directions. Furthermore, the developments carried out in Chaps. 4 and 5 – im-

plemented in parallel to the work on FeSe presented in this manuscript – will improve

the quality of our QMC description of FeSe and high-temperature superconductors in

general. Among the possible continuations to our work on FeSe, the most relevant are

the following:

• The investigation of the tetragonal-to-orthorhombic transition in FeSe. In particu-

lar, the GEOs introduced in Chap. 3 are able to probe the crystal field splitting of

the orbitals [103]. This can give new insights on the debated orbital origin of this

transition.

• As already mentioned, the implementation of a Pfaffian wavefunction would allow

us to include within our QMC approach both static and dynamic spin-spin correla-

tion. This improvement may be essential in order to understand the origin of the

paramagnetism of FeSe at ambient conditions and to provide an ab initio confirma-

tion of the paramagnetic-to-AFM phase transition identified in recent experimental

work [205, 207, 208]. Moreover, it would allow us to unravel the possible magnetic

origin of the tetragonal-to-orthorhombic transition at ambient pressure, thus giving

a definite ab initio answer to this long-standing problem.

• The investigation of the normal state of the parent compound of the iron chalco-

genide family: iron telluride (FeTe). Since this material shows collinear ordering,

but no superconductivity over the whole phase diagram, comparing its magnetic

properties with FeSe can shed new lights on the connection of magnetism and su-

perconductivity within FeSCs.

• The transition from bulk to few-layer and eventually to single-layer FeSe changes

the electronic and superconducting properties [202, 203]. Our JAGP variational

ansatz is tailored for investigating superconductivity through a direct determina-

tion of the electron pairing function within an intrinsically unconventional context

since no electron-phonon coupling is included in our description. Additionally, the

developments carried out in Chaps. 4 and 5 allow us to resolve the QMC pairing

function in reciprocal space. The comparison between the pairing functions obtained

at different thicknesses of the FeSe crystal (bulk, few layers, single layers) may help
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us understand the sharp increase of the critical temperature as the thickness is

reduced.

The perspectives outlined in this Section represent a small part of the possibilities

opened up by the algorithmic and programming developments presented in this thesis,

that have already been employed in several to-be-published works.

We showed in this work that ab initio QMC methods are now feasible on a wide range

of small to medium size systems with an amount of computer time achievable using most

supercomputing machines available nowadays. Subchemical accuracy (< 0.01 eV/atom

= 1 Kcal/mol) can be reached both on molecular clusters and crystalline solids, thus

ensuring a reliable description of materials at the quantum level. Furthermore, the infor-

mation accessible through the many-body wavefunction, fully avaliable within the QMC

approach, provides an invaluable tool for investigating the role of electron correlation at

the microscopic level.

Very large-scale simulations containing several thousands of atoms will likely not be

possible using QMC techniques even in the era of exascale computing. However, for the

aforementioned reasons supported by this thesis work, we strongly believe that QMC will

soon become the standard method for studying the wide range of microscopic phenomena

and fundamental problems which require less than 1000 atoms to be simulated.
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Appendix A

Computation of electron occupations

within QMC

This Appendix reports a detailed discussion on the procedure to compute orbital occupa-

tions within a quantum Monte Carlo simulation. The single-particle occupations are given

by the diagonal elements of the one-body density matrix. If we consider a N particles

many-body wavefunction Ψ(r1, · · · , rN) expandend over a basis set {χi(r)}, the one-body

density matrix can be conventionally written as:

ρ(r, r′) =
∑

i,j

ρijχi(r)χj(r′) (A.1)

where the sum goes over the whole basis set dimension.

In the context of geminal wavefunction formalism within QMC introduced in Chaps. 2 and 4,

the one-body density operator (1DM) has the following definition:

ρ̂ =
Nat∑

α,β

Nbas∑

i,j

|χαi 〉λαβij
〈

χβj
∣
∣
∣ (A.2)

which is analogous to Eq. A.1. We used the same notation as the main text. The total

normalization of 1DM is defined such that: Tr(ρ̂) = Tr(Sλ) = N where S is the basis

overlap matrix.

In order to filter out the occupations of individual atoms and/or specific angular mo-

mentum channels, we apply a generalized atomic projector P to Eq. A.1. We consider a

generic non-orthogonal basis set {χ̃αi } which can be defined for both open and extended

systems. The projector operator is defined as:

Pat =
∑

α,β

∑

i,j

|χ̃αi 〉 S̃−1
ij

〈

χ̃βj
∣
∣
∣ (A.3)

where the indices (i, j) goes over the whole projection basis set dimension (which can be

different with respect to the wavefunction basis set) and S̃ is the overlap matrix. The
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Figure A.1 – Electron occupations of Fe atoms computed with mixed estimators for three sample
orbitals of the antiferromagnetic (checkerboard) phase of FeSe. All curves show an inflexion point which
determines the border between atomic and interstitial regiones, but the change in concavity is more
pronounced in the case of Fermi orbitals.
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choice of the basis set for the projection is arbitrary. In our implementation we tested two

possible functional forms, both based on a modification of the localized atomic orbitals

employed for expanding the QMC wavefunction. For the first choice, which we denote as

as “bump” orbitals, we define these orbitals as a stepwise function which reads:

χP (r) =







χaµ(r) exp
[

− ln
(

1− ζr2

γ

)]2
if ζr2 > γ

0 if ζr2 ≥ γ

(A.4)

where r = r−R. The continuity of this function at the cutoff condition ζr2 = γ is easily

demonstrated. γ is a cutoff parameter which is tuned to isolate the contribution of the

considered atom in the simulation supercell from the others.

We tested a second choice based for the projection which smoothly decreases when

going away from the cutoff condition. For this purpose we use a Fermi-Dirac function and
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Figure A.2 – First and second eigenvalues of the one-body density matrix projected on the d angular
momentum channel of a reference Fe atom. The calculations have been performed using the mixed
estimator formalism in the 4× 4× 1 supercell of paramagnetic FeSe.
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we denote the projection basis set as:

χP (r) = χaµ(r)
1

exp
(
r−γ
∆

)

+ 1
(A.5)

where ∆ is a parameter which determines the steepness of the Fermi-Dirac distribution.

We use a value of ∆ = 0.05 for our calculations. γ is equivalent to the cutoff parameter

defined before and it must be tuned to filter out the occupations of the considered atom.

We denote this choice as “Fermi” orbitals.

Once the projection basis set is defined, we can compute electronic occupations by

projecting the 1DM in Eq. A.2 in the following way:

Tr [M ] = Tr [Pat ρ̂Pat] (A.6)

Mixed estimator formalism can be used for obtaining a more reliable results in the case of

DMC calculations. Notice that the computation of the matrix M involves the evaluation

of the basis set overlap between the normal and projected basis sets. Occupations of a

particular atom, angular momentum channel or orbital can be extracted by tracing over

the 1DM suitably restricted to the desired sector.

The choice of the cutoff parameter γ is very delicate since it can lead to very different

results. In Fig. A.1 we present a study of the occupations as a function of γ for three rep-

resentative d orbitals of a particular Fe atom in the simple antiferromagnetic checkerboard
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configuration of FeSe (see Chap. 6 for more details). We notice that the occupation curves

as a function of the cutoff present a characteristic point where the concavity changes. We

can choose the value of this inflexion point to determine the right value of the cutoff for the

considered atomic species, since it is a good indicator of the border between atomic and

interstitial regions. It is evident in Fig. A.1 that the inflexion points are more pronounced

in the case of the Fermi orbitals. This facilitates the definition of the cutoff parameter

and therefore we choose them for the final implementation.

An alternative procedure to determine the cutoff is to consider the eigenvalues of 1DM

projected onto an angular momentum channel for a reference Fe atom. 1st and 2nd

eigenvalues (in descending order) of 1DM projected onto d-orbital in paramagnetic FeSe

are plotted in Fig. A.2. We choose the value of the cutoff radius such as the magnitude of

the 2nd eigenvalue is below a certain thresold – which we set at 10−3 – for each d-orbital.

In this way, we avoid to include any virtual state when computing the occupations. The

chosen cutoff is indicated by the straight vertical line in Fig. A.2.

The two aforementioned procedures yield a very similar value of the radial cutoff. How-

ever the second one is more robust and it can be easily automatized for the implementation

of methods requiring orbital occupations such as the DFT+U framework.



Appendix B

Parallel scheme for Brillouin zone

integration

Table B.1 – Basic instructions for splitting the MPI communicators to create an appropriate scheme
for BZ integration in DFT. The same scheme is used in QMC calculations when averaging over multiple
twist conditions.

! number o f proce s se s in rows and columns

columns_nproc = nk

rows_nproc = ( world_nproc ) /nk

! c rea t e the g r i d and s p l i t the

communicators

irow = ( world_rank ) /( rows_nproc)

j c o l = mod( world_rank , rows_nproc)

ca l l MPI_comm_split(world_comm , irow , j c o l ,

rows_comm , i e r r )

ca l l MPI_comm_split(world_comm , j co l , irow ,

columns_comm , i e r r )

! rows /columns proce s s IDs

ca l l MPI_comm_rank (rows_comm , rows_rank ,

i e r r )

ca l l MPI_comm_rank (columns_comm ,

columns_rank , i e r r )

! synchronize

ca l l MPI_barrier (world_comm , i e r r )

In this short Appendix we present a code snippet of the algorithm used for k-points

200
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sampling with the DFT code described in the text. For interfacing purposes, the same

algorithm is used also for QMC when using multiple twist conditions.

The two subsequent calls to the instruction MPI_comm_split allows to split the con-

sidered MPI communicator (denoted as world_comm in two independent groups which we

denote as rows (communicator rows_comm and columns (communicator columns_comm).

Each column accommodates all k-points included in the calculation, whereas each rows

is composed by a pool of processors devoted to a single boundary condition.

In this way, in DFT calculations the pool of processors of each row deals with the

parallelization over the real space grid for each boundary independently. When an aver-

age over k-points is required, it is sufficient to perform collective operations within the

columns communicator. Within QMC, we can straightforwardly apply the same scheme

by assigning to each processor in the row pool a single walker instead of a slice of the

integration mesh as in DFT.

It is worth remarking that this scheme offers a very simple way for interfacing DFT and

QMC codes, but it has a sort of drawback as the number of processors must be multiple

of the number of k-points/twist conditions. However, within modern supercomputers

equipped with a large amount of CPUs this does not constitute a problem.



Appendix C

Automatic algorithmic

differentiation with complex

variables

In this Appendix we present how to apply the automatic algorithmic differentiation (AAD,

see Sec. 2.5.3 in the main text for more details) of two algebraic operations for complex

variables ubiquitous in the QMC code developed during this thesis: the dot product

between two vectors and the matrix-matrix multiplication. Let us consider the dot product

between two generic complex vectors a = aR + aI and b = bR + bI of any dimension.

The product reads:

cR + icI =
∑

j

(aRj + iaIj )(b
R
j + ibIj ) =

∑

j

(aRj b
R
j − aIjbIj ) + i(aRj b

I
j + aIj b

R
j ) (C.1)

where i is the imaginary unit and the superscripts R/I identify the real and imaginary

parts of the vector components. Let us focus for sake of simplicity on a single component.

The adjoint of real and imaginary parts of the vector components are defined as an

arbitrary linear combination of the derivatives of these quantities with respect to the

outputs cR/cI of the direct algorithm. By setting all coefficients of the linear expansion

of the Jacobian to 1, the adjoints read:

āRj = āRj +
∂cR

∂aRj
c̄R +

∂cI

∂aRj
c̄I = āRj + bRj c̄

R + bIj c̄
I (C.2)

āIj = āIj +
∂cR

∂aIj
c̄R +

∂cI

∂aIj
c̄I = āRj − bIj c̄R + bRj c̄

I (C.3)

b̄Rj = b̄Rj +
∂cR

∂bRj
c̄R +

∂cI

∂bRj
c̄I = āRj + aRj c̄

R + aIj c̄
I (C.4)

b̄Ij = b̄Ij +
∂cR

∂bIj
c̄R +

∂cI

∂bIj
c̄I = āRj − aIj c̄R + aRj c̄

I (C.5)
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The final version of the adjoint dot product can be written in a compact form using

vector notation as follows:

ā = ā + b∗c̄ (C.6)

b̄ = b̄ + a∗c̄ (C.7)

The above expression works also in the case that one of the vectors, for instance a, is

real by imposing that also the corresponding adjoint ā is real simply by disregarding its

fictious imaginary part.

We turn now our attention to the matrix-matrix multiplication, which is certainly the

most important and widely used algebraic operation in the TurboRVB code due to its very

efficient, machine optimized implementation in standard linear algebra packages such as

LAPACK [28]. We consider two generic complex matrices A and B and a standard case

of matrix-matrix multiplication present in the LAPACK library which reads:

C = βC + αAB = (βR + iβI)(CR + iCI) + (αR + iαI)(AR + iAI)(BR + iBI) (C.8)

where α and β are generic complex numbers and the subscripts R/I denote as usual real

and imaginary parts. By following a recipe analogous to the one used for the dot product

and using the linearity property of the adjoints, we find the following set of adjoints of

real and imaginary parts of the input matrices:

ĀR = ĀR + αRC̄RB
T
R + αIC̄IB

T
I (C.9)

ĀI = ĀI − αIC̄RBT
I + αRαRC̄IB

T
R (C.10)

B̄R = B̄R + αRC̄RA
T
R + αIC̄IA

T
I (C.11)

B̄I = B̄R − αIC̄RATI + αRC̄IA
T
R (C.12)

C̄R = βRC̄R (C.13)

C̄I = −βIC̄I (C.14)

Notice that the adjoint of the output of the direct algorithm C must not be updated. In

compact matrix notation, we can write the final adjont for the operation in Eq. C.8 as:

Ā = Ā + α∗C̄B† (C.15)

B̄ = B̄ + α∗C̄A† (C.16)

C̄ = β∗C̄ (C.17)

It is straightforward to generalize the above set of equations to the other cases included

in the LAPACK libraries.


