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Introduction

The Schrödinger equation[1] together with its relativistic counterpart, the

Dirac equation[2], can probably be considered the biggest deceit in the history

of knowledge. In our hands we hold the keyhole for the full understanding of

the microscopic world but there is no key available. We can exactly describe

the problem that we want to solve and obtain its constraint to reality but we

cannot solve it, we cannot access this knowledge. It is for this reason that

every PhD thesis dealing with quantum chemistry or condensed matter needs

to have in its introduction (if not even before!) this sentence from Paul A. M.

Dirac:

"The underlying physical laws necessary for the mathematical theory of a

large part of physics and the whole of chemistry are thus completely known,

and the difficulty is only that the exact application of these laws leads to equa-

tions much too complicated to be soluble. It therefore becomes desirable that

approximate practical methods of applying quantum mechanics should be devel-

oped, which can lead to an explanation of the main features of complex atomic

systems without too much computation."[3]

This sentence is indeed the key for the understanding of a large part of the

modern research in quantum mechanics and, consequently, the key to under-

stand the purpose of this thesis. The problem is well known and eminent

scientists have written papers and books on this topic, so I will try to cut the
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story short on what I can assume is common background knowledge.

From the perspective of atomistic simulations, when we look at the Schrödinger

equation for atomic systems

iℏ
∂Ψ

∂t
=

[︂
T̂ + V̂ ii + V̂ ei + V̂ ee

]︂
Ψ, (1)

where T̂ is the kinetic energy operator, V̂ ii is the ion-ion potential, V̂ ei the

electron-ion potential and V̂ ee the electron-electron potential. We can recog-

nize in this last term the origin of the main challenges in this research field. It

introduces the correlation between the electrons and makes impossible to find

the exact solution for almost every interesting system. Indeed, if the electron-

electron potential is absent electrons do not "see" each other and they can

be treated as independent particles, with the only requirement of satisfying

the Pauli exclusion principle. A many-electron problem is thus reduced to the

antisymmetrization of the single electron solution of the Schrödinger equation

and for N electrons the Hilbert space associated with this problem is basically

equivalent to N times the Hilbert space of a single particle problem. When we

introduce the electron-electron potential, the electrons are influenced by the

surrounding ones and we cannot decompose the problem in N single-particle

ones. The Hilbert space dimension grows exponentially with the number of

electrons and the exact ground state may become impossible to calculate. In

principle, a solution is always possible, but it has a cost that grows exponen-

tially with the size of the system, and so for interesting problems it becomes

immediately incompatible with the time necessary for a Phd, a lifetime or the

universe existence. Thus, it is important to find approximations and techniques

to obtain an approximate solution for the Schrödinger equation, yielding the

required degree of accuracy.

Many problems can indeed be addressed without even going to the quantum

world or even without maintaining an atomic resolution, while others require

to push the available approximations and calculation facilities to their limits.
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Thus, it is necessary to find a balance between accuracy and computational

cost, targeting the cheapest solution allowing a meaningful description of the

system under study. This has stimulated an impressive effort of the scientific

community to find, tune, and optimize these techniques in the constant at-

tempt to push always a bit further the limit of what was possible and what

wasn’t. Many techniques have been developed ranging from the Molecular Dy-

namics to Hartree-Fock, to Density Functional Theory, Density Matrix Renor-

malization Group, Coupled Cluster, Dynamical Mean Field Theory, Quantum

Monte Carlo and many other mores, each one valid and affordable in a certain

range.

In this thesis I will deal with the Quantum Monte Carlo (QMC) framework:

it consists of a series of techniques meant to address the electronic problems

with a high level of accuracy. The name Monte Carlo is a huge collector of

methods that are fundamentally based on the concept of stochasticity. They

are applied in many different tasks requiring numerical calculation, even in

some cases that we perceive as very far from science. Monte Carlo based

methods appear in finance, in risk management, in project planning, in qual-

ity control, in machine learning and many other fields. Just to give an idea,

during these four years, with other three colleagues (Lucas Kohn, Matteo Seclì

and Davide Tisi), we successfully applied Monte Carlo to process monitoring

and task optimization problems in business, in the context of a collaboration

between SISSA and Esteco (a software company based in Trieste). I person-

ally find extremely gratifying the idea of distilling information from random

processes. The concept behind QMC is exactly to apply stochastic processes

to obtain information on the quantum world. In particular, in this thesis I

will present the technical advances and the related "experiments" with two

different QMC techniques: the variational Monte Carlo (VMC)[4, 5, 6] and

the diffusion Monte Carlo (DMC)[5, 6, 7, 8]. I will describe the technical de-

tails of these methods in the next chapter but here let me just point out their
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basic working mechanism and why they are, in my opinion, very promising

techniques for the near future. Both VMC and DMC are wave function (WF)

based methods. This means that their workflow depends on a WF that is

the central object of the calculation. The two pillars of VMC and DMC are

respectively the variational principle and the projection technique. These two

foundations give a very robust and reliable background to the theories and the

techniques developed. In particular, in the last years many developments have

been made in the variational search thanks also to the increasing interest of

the scientific community in machine learning optimization problems. In the

machine learning nomenclature it is straightforward to identify VMC as an un-

supervised learning problem. The variational search is performed attempting

to minimize the total energy of the system that, in this case, plays the role of a

cost function. DMC, instead, is a projection algorithm performed statistically

using the information on the sign contained in the given WF, dubbed here as

guiding function. In this way, we can considerably improve the description of

the ground state (GS), projecting onto the lowest possible energy WF with

the same signs of the guiding WF. In the ideal case of a guiding function that,

for each configuration, has the same sign of the GS, the above described DMC

algorithm provides the exact solution[5, 6]. The core DMC and VMC algo-

rithms are performed using operation on dense matrices and for this reason

they allow us to exploit the peak performance of the architectures used for

the calculation. This feature will allow a relatively easy transition to all the

architectures that will be developed in the future that will be, most likely,

designed to achieve the best performances on matrix operations. Moreover,

VMC and DMC algorithms have a moderate scaling with the number of the

electrons in the system, O(N3) and O(N4) respectively with N being the num-

ber of electrons, leading to a good scaling with the size of the systems and so

they are particularly indicated for large systems. For the time being, the most

important limits are the QMC prefactors of the computational cost, constrain-
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ing the maximum system size to a few hundreds of electrons. However, this

problem is going to disappear in the future thanks to the introduction of new

technologies for the calculation facilities and software advances. In this way

these prefactors will become affordable while leaving intact the good scaling

properties of QMC, making it a good candidate for very accurate calculations

on large systems in the next future.

The aim of this thesis and of the work I have done in these years is to

introduce new technical advances and to try to understand the limits and

strengths of the different possibilities available for the calculations to unveil

physical and chemical properties of systems that are not accessible with the

more standard approaches. Since we do not have control over the performances

of the devices used for the calculations, the main contribution that we can give

to the growth and development of QMC is to improve the quality of the results

that can be obtained at a given cost. Introducing new techniques and protocols

for simulations can indeed increase the quality of the results of the calculations

and also the control that the scientists can have with a given method. As I

already mentioned, VMC and DMC are two WF based methods: the workflow

of the computations and the quality of the result are strongly dependent on the

WF chosen. Hence, it is critical to find the best balance possible between cost

and accuracy. As I will explain later, a successful DMC calculation relies on a

reasonably accurate WF and so it is crucial to tackle correctly the variational

search of the WF. As in every variational problem, the first and more important

decision that we have to face when we approach a new system with VMC is

the ansatz choice. This choice may look like a bare mathematical problem,

but, instead, it is determinant from a physical point of view. For example, an

ansatz may not be able to describe a particular physical feature fundamental

for the system in exam. By choosing the ansatz we often make some physical

hypotheses and constrain the variational search. Except for some very limited

cases, it is impossible to know in advance which will be the best ansatz for
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the system in exam, but narrowing the choice is possible and fundamental to

obtain meaningful results and to save computational resources.

In the QMC framework it is very common to factorize the WF in two dif-

ferent elements: a fermionic mean-field that defines the WF behavior and im-

plements the Pauli exclusion principle [9] and a Jastrow factor (JF) correlator

that gives an exponential modulation to the former factor to take into account

explicitly the electronic correlation. The simplest choice for the mean-field part

is the Slater Determinant (SD) [10]; in two words it is the antisymmetrized

product of a set of orthonormal orbitals that take the name of molecular or-

bitals (MO). In terms of computational cost, the SD is the cheapest fermionic

WF. It can be obtained directly from mean field calculations like Hartree-

Fock (HF) or Density Functional Theory (DFT) and then further optimized if

necessary. It is possible in some cases to obtain very high accuracies already

with the SD and it is even more likely when it is combined with a JF (JSD)

[11, 12]. Unfortunately, there are many systems where the JSD cannot cap-

ture properly the correlation of the system and the description of the chemical

properties is very poor[13, 14, 15, 16]. In order to overcome this problem, dif-

ferent approaches have been elaborated and many of them involve the use of

more advanced WFs. One of the most popular choices in this sense is the use of

multi-determinant WFs: they are calculated as the linear combination of sev-

eral SDs, each one with a different set of MOs. This approach is in some cases

very effective and allows to reach extremely high accuracies[16, 17, 18, 19, 20].

It is systematically improvable and with a large enough number of SDs it is

possible in principle to find the exact ground state WF. Unfortunately, this

method comes with some drawbacks, indeed, the number of SDs that have to

be considered, and thus the computational cost, scales exponentially with the

size of the system[21]. Therefore, even if it represents a very powerful tech-

nique for small systems, it easily becomes too expensive when increasing the

number of electrons. Thus, it is fundamental to find techniques to improve the
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accuracy of the SD while remaining with a similar computational cost.

The theory and the results presented in this work move exactly in this

direction, by using ansatze that have a cost similar to the SD, but able to

describe much more accurate solutions. In particular, in this thesis, I will

present and analyze the Jastrow correlated Antisymmetrized Geminal Power

ansatze, by introducing the most general one and trying to understand the

effectiveness and the limitations of the different possibilities. The use of the

pairing function replaces the single-particle description of the SD with a richer

one in terms of electron pairs. The corresponding WF is a natural extension

of the SD ansatz and represents a direct and efficient implementation of the

Anderson’s resonating valence bond (RVB) theory of many-electron WFs. In

particular, it provides a direct description of the singlet and triplet correlations

that are absent in the SD. Even if the pairing functions cannot be improved

systematically, these WFs have a much larger variational freedom than the SD

with a similar computational cost. In the following chapters I will describe

the technical details required for the calculation, but let me sketch here the

available possibilities. The pairing function describes a pair of electrons given

their spins and positions and has the following explicit form

g(r⃗1σ1, r⃗2σ2) =
1√
2
(| ↑↓⟩ − | ↓↑⟩)g+(r⃗1, r⃗2)

+
1√
2
(| ↑↓⟩+ | ↓↑⟩)g−(r⃗1, r⃗2)

+ | ↑↑⟩g↑(r⃗1, r⃗2) + | ↓↓⟩g↓(r⃗1, r⃗2), (2)

here some symmetry constraints have to be applied to ensure the proper

fermionic behavior, but this will be discussed in the next chapters. Depending

on the definition of the pairing function, qualitatively distinct WFs can be

obtained. The differences between these ansatze depend on the terms kept

in Eq.(2) leading to peculiar magnetic properties of the electron pair. There

are three important cases: i) when no triplet correlations are allowed, we have
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a perfect singlet and we denote it by AGP[22, 23, 24]; ii) when only the par-

allel spin term of the triplet component are omitted (namely the last line in

Eq.(2)), the WF can break the spin symmetry but the magnetic order parame-

ter can be directed only in the z-quantization axis, and in this case we will refer

to AGPu[25]; iii) the most important case is the most general one that con-

tains all triplet contributions and it is known as Pfaffian WF (Pf)[26, 27, 28].

The Pfaffian WF literally realizes the most general Antisymmetrized Gemi-

nal Power and its use together with a new general spin and charge dependent

JF is the main technical contribution to the TurboRVB[29] code and to the

QMC framework presented in this thesis. However, for the pairing functions,

the optimization of a large number of non-linear variational parameters can

become a serious limitation if not handled efficiently. Indeed, in order to ex-

ploit the full potential of these ansatze it has been fundamental to use the

most recent techniques for the calculation of the derivatives and optimization

strategies. The AGP ansatz has already been successfully used in the past and

it has represented the key concept at the basis of the TurboRVB package.

Also the Pf WF is not a novelty in literature [26, 27], but in the previous

attempts it has been used by exploiting only a very small fraction of the large

variational freedom of the ansatz. The results were not encouraging and the

energies obtained with this ansatz did not improve the ones of the AGP that,

in turn, has a lower computational cost. Despite the Pfaffian was no longer

used in the electronic systems, the experience with lattice models has shown

that the Pf WF can improve considerably the description of magnetic and

correlated systems[30]. Moreover, the introduction of a powerful JF and the

recent results obtained in combination with the AGP [31, 13, 32] encouraged

us to look for the unexpressed potential of the Pf WF. Finally, I will introduce

the Pfaffian WF with a constrained number of MOs (Pfn). This is a variant

of the Pf WF that is useful to reduce the number of variational parameters

still maintaining many of the properties of the original Pf. Even if it has not
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been deeply studied and carefully benchmarked it has been implemented in

TurboRVB and represents a promising alternative to explore in the future.

Note that, in general, all the above mentioned WFs take the prefix J when

they are combined with a JF correlator.

The content of this thesis is based on the research papers published in

these years[12, 28, 33, 13, 29] and on the one in preparation[34]. For the sake of

completeness and for a possible reader not expert in the technicalities of QMC,

in the first chapter I will discuss the VMC and DMC algorithms, the calculation

of the derivatives using the Adjoint Algorithmic Differentiation[35] (known

in many other communities as Backpropagation) as well as the optimization

techniques used. In the second chapter I will describe the WFs mentioned

above and the transformations required to convert the WFs from an ansatz

to another one and to fix the possible numerical instabilities that can occur,

finally describing an efficient procedure to calculate the expectation value of

the S2 operator.

Starting from the third chapter I will deal with the physical systems that

have been investigated using the techniques described in the first two chap-

ters. Here I will discuss the problem of the hydrogen chain[12], a one dimen-

sional lattice of equispaced atoms, a study conducted in collaboration with

the Simons Foundation. This system lies at the boundary between models

and realistic systems, being the simplest realization of an atomic lattice and

still resembling the Hubbard model. Despite its simplicity, this model shows

a rich phase diagram and, surprisingly, a metal-insulator transition due to a

self-doping mechanism. For this study we used a JSD ansatz that, despite

the presence of more powerful alternatives, provides excellent results, also in

comparison with the other methods used in the study[11, 12].

In the fourth chapter, instead, I will discuss an emblematic failure of the

JSD ansatz, the H4 model system[13], that has been also extremely useful to

demonstrate that the AGP WF, when not combined with a JF, can lead to
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misleading results and also that the JF is fundamental to obtain the correct

nodes in the AGP optimization.

In the fifth chapter I will show the benchmark of the JPf, JAGP and JSD

WFs on the atoms and diatomic molecules of the first row of the periodic table

and on the RVB prototypical case of the Benzene molecule[28, 33, 29]. Among

the different dimers, I will particularly focus on the carbon, nitrogen, and

oxygen ones, three systems where the magnetic interaction plays a fundamental

role. In these cases only the JPf or multi-determinant WFs can reach a high

accuracy while the JSD and JAGP have quantitatively and qualitatively wrong

results. Here I will also show that for non-magnetic systems, like the Benzene,

the use of the JAGP is equivalent to the JPf. Finally, we will see that also for

non-covalent bonds, like for the benzene dimer, the use of optimized pairing

functions like the JAGP leads to significantly more accurate results compared

to the JSD also at DMC level.

Finally, I will try to summarize what we have discussed in the different

sections to reach a better understanding of the potential limitations of the

JAGP and the JPf, to highlight the possible future developments and systems

that the JPf could help to investigate. But for the moment let us go to the

most technical part to get some insight on how these methods work and how

these ansatze are defined.
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Chapter 1

Introduction to Quantum Monte
Carlo

QMC is a widespread acronym used to indicate many different techniques for

the numerical simulation of electronic systems, exploiting different principles

and approximations, and all sharing the use of stochastic methods of calcula-

tion.

The statistical foundation of the Monte Carlo (MC) technique is standard

and is out of the scope of this thesis. The interested reader is encouraged to

visit the related Wikipedia web page[36] that will provide a decent introduc-

tion. For the technical details and a quantitative understanding of MC work-

ing principles I sincerely advise you to read the book "Quantum Monte Carlo

Approaches for Correlated Systems" written by Federico Becca and Sandro

Sorella[5]. The first chapter of the book describes the MC in general, while

the later chapters deal with many QMC approaches for lattice models and

the last chapter deals with QMC for realistic system simulations. For what

concerns us, however, it is enough to say that if we have a quantity x dis-

tributed according to a certain probability distribution p(x), a MC algorithm

can provide an arbitrarily large set of samples {xi} distributed according to

the probability distribution p(x).

There are different ways to build an algorithm to study a quantum system
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using a MC method, but, as I have already anticipated in this thesis I will

use two different techniques that are suitable to investigate atomistic realistic

systems: the variational Monte Carlo (VMC) and the diffusion Monte Carlo

(DMC). Within these methods, the quantity x to be sampled for a system of N

electrons is the real space configuration of the 3N electronic coordinates and

the N spin values x = (r1σ1, r2σ2, . . . , rNσN). We can notice that despite the

VMC and DMC working mechanisms are built around the concept of WF, they

can be described without specifying the particular ansatz chosen. The ansatze

will be the subject of the next chapter. In the following sections we will analyze

these two different methods and the optimization techniques implemented in

TurboRVB, and for this reason I will follow the review paper that we recently

published summarizing its features[29].

1.1 Variational Monte Carlo

As we can easily guess from its name, the VMC method working principle

relies on the variational principle for the calculation and optimization of the

WF Ψ in order to find the best possible approximate GS within a given ansatz.

The expectation value of the energy ⟨E⟩ can be written as:

⟨E⟩ =
∫︁
dxΨ2 (x) · ĤΨ(x) /Ψ(x)∫︁

dxΨ2 (x)
, (1.1)

where x = (r1σ1, r2σ2, . . . rNσN) here and henceforth is a shorthand notation

for the N electron coordinates and their spins. If we define

eL (x) =
ĤΨ(x)

Ψ (x)
, and π (x) =

Ψ2 (x)∫︁
dx′Ψ2 (x′)

, (1.2)

the so-called local energy and the probability of the configuration x, respec-

tively, we can recast Eq. (1.1) as

⟨E⟩ =
∫︂
dxeL (x) π (x), (1.3)
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This multidimensional integration can be evaluated stochastically by generat-

ing a set of configurations {xi} according to the distribution π (x) using the

Markov chain MC such as the (accelerated [37, 38]) Metropolis method and

by averaging the obtained local energies eL (xi):

EVMC = ⟨eL (x)⟩π(x) ≈
1

M

M∑︂

i=1

eL (xi), (1.4)

which has an associated statistical error of
√︂

Var[eL(xi)]/M̃ , where Var[eL(xi)]

is the variance of the sampled local energies, and M̃ is the sampling size M

divided by the autocorrelation time. This indicates that the precision of the

VMC evaluation is inversely proportional to the square root of the number of

samplings (i.e., of the computational cost). It is worth to notice that, if Ψ(x)

is an eigenfunction of Ĥ, say with eigenvalue E0, than eL(x) = E0 for each x,

implying that the variance of the local energy is zero and EVMC = E0 with no

stochastic uncertainty. This feature is known as the zero-variance property.

This scheme for the calculation of the expectation value of the energy can

be extended to all the other observables that can be evaluated in real space.

Considering a generic operator Ô we have that its expectation value ⟨O⟩ is

⟨O⟩ =
∫︁
dxΨ2 (x) · ÔΨ(x) /Ψ(x)∫︁

dxΨ2 (x)
=

∫︂
dxOL (x) π (x), (1.5)

where π(x) has the same definition of Eq. (1.2) and the local value of the

operator OL(x) is defined as

OL (x) ≡
ÔΨ(x)

Ψ (x)
. (1.6)

With the same argument used for the energy we can define the VMC expec-

tation value of an operator OVMC as

OVMC = ⟨OL (x)⟩π(x) ≈
1

M

M∑︂

i=1

OL (xi). (1.7)
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A similar procedure is used to average the derivatives of the energy with

respect to the WF parameters. Given a set of parameters (α1, α2, · · · , αp) that

define the WF Ψ(x, α) one can use the variational theorem

EVMC (α) =

∫︂
dxeL (x, α)π (x, α) ≥ Eexact. (1.8)

Indeed, in order to obtain an accurate description of the GS, the optimization

of the WF is a crucial step for VMC and, as a consequence, also for DMC.

The optimization techniques are the topic of the next section.

1.2 Optimization

The optimization of a many-body WF is a difficult challenge. Not only opti-

mizing a cost function containing several parameters is a complex numerical

task, due to the presence of several local minima in the energy landscape, but

also this is further complicated by the presence of statistical errors in the QMC

evaluation of any quantity.

Nevertheless, a great improvement in this field has been achieved when

the QMC optimization techniques have made use of the explicit evaluation

of energy derivatives with finite statistical errors. For the calculation of the

generalized forces (fi = − ∂E
∂αi

) TurboRVB adopts the adjoint algorithmic

differentiation (AAD)[35]. This technique exploits the chain rule for the cal-

culation of the derivatives.

Unfortunately, the bare knowledge of the derivatives is not enough for an

optimization problem that can involve thousands of parameters and a good

strategy is also necessary. For VMC optimization it is particularly efficient to

use the so-called “stochastic reconfiguration" (SR) [39, 40] combined sometimes

with “the linear method" [41, 42, 43]. The following subsection will deal with

the calculation of the derivatives trough the AAD and the SR optimization

strategy.
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1.2.1 Derivatives Calculation

The derivatives of total energies with respect to variational parameters rep-

resent an essential ingredient for optimizing a many-body WF. Also forces

(derivative with respect to atomic positions) are essential to perform struc-

tural optimization or molecular dynamics calculation. However, in a complex

code, and especially in QMC, the evaluation of the functional derivatives, nec-

essary for the WF optimization, is very complicated, mainly for the complexity

of the algorithm that, in turn, may lead to a very inefficient implementation,

though recent progress has been done [44]. For instance, a simple approach is

to compute them with finite difference expressions, that leads to a too large

computational time, because it is obviously proportional to the number of

targeted derivatives.

The AAD is a method capable of solving all the above problems, essen-

tially by a smart application of the differentiation chain rule. This method

is particularly efficient when the number of input parameters is much larger

than the corresponding output and allows the calculation of all possible deriva-

tives in a computational time proportional (with a small prefactor, see e.g.,

Fig. 1.1) to the one for computing the target function (i.e., the energy or the

WF value). AAD is therefore the ideal method for Quantum Monte Carlo

when the variational WF contains several variational parameters.

But how does AAD work? I will not provide a rigorous and complete

explanation, but it can be useful to gain a general intuition about this technique

that is now widely used in different fields. We can define an algorithm as the

function W mapping a set of inputs X0 into a set of output targets Y such

that Y = W (X0). In particular, an algorithm goes through a set of l code

assignment operations {Wi} that here I will assume to be all differentiable.

In this way, the input X0 is transformed in X1 = W1(X0), and, in general,

Xi = Wi(Xi−1), until the last operation Y = Wl(Xl−1). Obviously in many
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Figure 1.1: Ratio of CPU time required to compute energies and all force
components referenced to the one required for the simple energy calculation
within VMC. The calculations refer to 1, 2, 4, and 32 water molecules. The
inset is an expansion of the lower part of the plot. From reference [35]

.

operations not all the inputs are modified and for simplicity we can consider

as if an identity is applied to them. The algorithm W , that takes the name of

direct algorithm, is decomposed in this way in a set of small easily differentiable

operations. Then it can be described as

Y = Wl(Wl−1(Wl−2(. . .W1(X0)) . . . ). (1.9)

If we apply the chain rule for the derivation of a composed function, we obtain

that the derivatives of the output Y i with respect to an input Xj can be

calculated as

∂Y i

∂Xj
=

∂W i
l

∂Xl−1

⃓⃓
⃓⃓
Xl−1

· ∂Wl−1

∂Xl−2

⃓⃓
⃓⃓
Xl−2

· · · ∂W1

∂X0

⃓⃓
⃓⃓
X0

. (1.10)

So, starting from the direct algorithm we can derive every single operation with

respect to their input and then calculating the derivatives of the final outputs

with respect to the initial inputs by following backward the composition order,
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defining an adjoint algorithm. Using this technique it is possible to calculate

the derivatives of each function that can be written in the form of an algorithm

under the only hypothesis that all the operations involved are differentiable.

As already mentioned, all the derivatives in TurboRVB are calculated

by applying AAD. In the following we will focus on the calculation of the

derivatives of the energy with respect to the variational parameters. Even if it

is also possible to calculate the interatomic forces, they have not been deeply

used in the work presented here and thus their derivation is not presented.

The derivatives of the energy with respect to a given real variational pa-

rameter αk (one complex parameter can be thought to be composed by two real

ones, its real and imaginary part, respectively) is represented as a generalized

force:

fk = −∂E (α)

∂αk

= − ∂

∂αk

⟨Ψα|Ĥ|Ψα⟩
⟨Ψα|Ψα⟩

. (1.11)

In variational Monte Carlo, the derivative can be evaluated using M configu-

rations of electron coordinates [5]:

fk = −2Re

[︄∑︂

x

e∗L (x)
(︁
Ok (x)− Ōk

)︁
|Ψα (x)|2∑︁

x |Ψα (x)|2

]︄

≈ −2Re

[︄
1

M

M∑︂

i=1

e∗L (xi)
(︁
Ok (xi)− Ōk

)︁
]︄
,

(1.12)

where eL (x) is the local energy, Ok (x) is the logarithmic derivative of the

WF (i.e., Ok (x) = ∂ lnΨα(x)
∂αk

), and Ōk is its average over M samples (i.e.,

Ōk = 1
M

M∑︁
i=1

Ok (xi)). In TurboRVB, the logarithmic derivative (Ok (x)) is

computed very efficiently by using the algorithm defined with the AAD. No-

tice that the derivatives of the local energy are not needed here because the

Hamiltonian does not depend on any variational parameter. Instead, these

terms are necessary in order to calculate ionic forces (i.e., derivatives of the

total energies with respect to atomic positions). If the WF is an exact eigen-

state of the hamiltonian, the generalized forces fk exactly vanish without sta-
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tistical errors because the local energy is no longer dependent on x. In other

words, the derivatives have the zero-variance property and represent therefore

the fundamental ingredients for an efficient WF optimization.

1.2.2 Optimization Strategy

The bare knowledge of the derivatives, for such a complicated variational prob-

lem, is unfortunately only a first step for the optimization. A good optimiza-

tion strategy is indeed necessary to deal with a large number of parameters,

defining the WFs in a highly non-linear way. Once the energy derivatives are

computed, the most straightforward strategy to optimize a WF is to employ

the gradient descent method, where the WF parameters are iteratively updated

as follows:

αk → α′
k = αk + δαk (1.13)

δαk = ∆fk, (1.14)

where ∆ is a small constant and fk ≡ − ∂E
∂αk

is the generalized force already

defined in Eq. (1.11). However, this method does not work well when optimiz-

ing highly non-linear WF parameters because a small change of a given varia-

tional parameter may produce a very different WF, whereas another parameter

change may weakly affect the WF. Of course, one can use more sophisticated

methods such as the Newton-Raphson method, the conjugate gradient, the

quasi-Newton method, but the straightforward implementation of these op-

timizations do not work efficiently within a stochastic approach like QMC.

In order to overcome this difficulty, a more efficient change in the variational

parameters has been defined by means of a positive-definite preconditioning

matrix S and the generalized force vector f :

αk → αk +∆ ·
(︁
S−1f

)︁
k
, (1.15)
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where the matrix S is stochastically evaluated by means of M configuration

samples x = {x1,x2, . . .xM}:

Sk,k′ =

[︄
1

M

M∑︂

i=1

(︁
Ok (xi)− Ōk

)︁∗ (︁
Ok′ (xi)− Ōk′

)︁
]︄
, (1.16)

where Ok (xi) = ∂ lnΨ(xi)
∂αk

and Ōk = 1
M

M∑︁
i=1

Ok (xi). The resulting approach is

the so-called stochastic reconfiguration (SR) method [39]. The matrix S is

essentially a metric for the parameter space, measuring the distance of two

very close and normalized WFs[45]. Therefore, Eq. (1.15) is simply the steep-

est descent in this curved manifold. This observation connects the SR method

with the so-called natural gradient method, widely used in the context of deep

learning [46]. In this context, for each parameter α,
(︂
Ôk − Ōk

)︂
and Sk,k′

can be interpreted as the score function (i.e., the gradient of the log-likelihood

function) and the Fisher information matrix, respectively, while the WF square

|Ψ(x)|2 plays the role of the likelihood function. In this sense, the stochastic

reconfiguration method is essentially identical to the natural gradient opti-

mization with the Fisher information matrix that has been intensively used in

the machine-learning community.[46]

The straightforward implementation of the SR method is often not possible

considering that both S and f are computed stochastically, that implies insta-

bilities in the evaluation of S ′−1f . Therefore, in practice, the diagonal elements

of the preconditioning matrix S are shifted by a small positive parameter (ε)

as:

s′i,i = si.i(1 + ε). (1.17)

This modification improves the efficiency and stability of the optimization by

several orders of magnitude, as shown in Fig. 1.2. Finally, the variational

parameters are updated as:

αk → αk +∆ ·
(︂
S′−1

f
)︂
k
. (1.18)
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Figure 1.2: Optimization of the variational WF in the simple one-dimensional
Heisenberg model H = J

∑︁
i S⃗i · S⃗i+1 with the standard SR (ε = 0, open

circles) and with the present regularization ε = 0.001, open triangles). In the
figure, the evolution of the nearest neighbor spin-spin (Sz) Jastrow parameter
is plotted. This figure clearly shows that the SR method with the regularization
adopted is several orders of magnitude more efficient than the standard SR for
determining the variational parameter with a given statistical accuracy. The
inset shows the first few iterations. From reference [47].

For the optimization of WFs with a large number of variational parameters,

the inversion of the matrix S′ can easily become the bottleneck for the perfor-

mance of the optimization procedure since it implies the inversion of a square

matrix with leading dimension equal to the number of variational parameters.

Recently a highly efficient parallel realization of the SR has been developed

and it has been intensively used to obtain the results presented in this the-

sis. This alternative approach uses the conjugate gradient method to calculate

S′−1f . With the conjugate gradient the matrix S′ is used only to perform ma-

trix vector multiplications. The M samples are distributed between the MPI

tasks and the sample dimension is much smaller than the number of variables.
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In this case, instead of calculating directly the matrix product S′X where X

is a generic vector, it is convenient to factorize the matrix S′ as

S = ÕÕ
†
, (1.19)

where Õij = Oi (xj) − Ōi, and perform two separate matrix vector multipli-

cations exploiting the fact that the matrix Õ is already distributed in the

memory of all the processors used. This implementation makes it possible to

use SR with an almost negligible cost even for several thousands of variational

parameters.

1.3 Diffusion Monte Carlo

Until now I referred to the DMC technique without further specifying the

algorithm. In TurboRVB a variant of the DMC that is known as Lattice

regularized diffusion Monte Carlo (LRDMC) has been implemented. Initially

proposed by M. Casula et al. [48], it is a projection technique that allows

us to improve a variational ansatz systematically. This method is based on

the lattice Green’s function Monte Carlo (GFMC) [49, 50, 51], and filters out

the ground state WF |Υ0⟩ from a given trial WF |ΨT⟩. As explained in the

following, the GFMC relies on the matrix projection technique for determining

the largest eigenvalue and its corresponding eigenvector.

Since the eigenstates of the Hamiltonian have the completeness property,

the trial WF can be expanded as:

|ΨT⟩ =
∑︂

n

an |Υn⟩, (1.20)

where an is the coefficient for the n-th eigenvectors (Υn) of Ĥ. Therefore, by
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applying GM =
(︂
Λ− Ĥ

)︂M

, one obtains

|Υ0⟩ ∝ lim
M→∞

(︂
Λ− Ĥ

)︂M

|ΨT⟩

= lim
M→∞

(Λ− E0)
M

[︄
a0 |Υ0⟩+

∑︂

n̸=0

(︃
Λ− En

Λ− E0

)︃M

an |Υn⟩
]︄
,

(1.21)

where Λ is a diagonal matrix with Λx,x′ = λδx,x′ , and En is n-th eigenvalue

of Ĥ. Since Λ−En

Λ−E0
< 1 (λ should be sufficiently large in order to fulfill this

condition for any n ̸= 0), the projection filters out the ground state WF Υ0

from a given trial WF |ΨT⟩, as long as the trial WF is not orthogonal to the

true ground state (i.e., a0 ≡ ⟨ΨT|Υ0|ΨT|Υ0⟩ ≠ 0).

In order to apply the LRDMC for ab initio electron calculations, the original

continuous Hamiltonian is regularized by allowing electron hopping with step

size a, in order to mimic the electronic kinetic energy. The corresponding

Hamiltonian Ĥa
is then defined such that Ĥa → Ĥ for a → 0. Namely, the

kinetic part is approximated by a finite difference form:

∆if (xi, yi, zi) ≈ ∆a
i f (xi, yi, zi)

≡ 1

a2
{[f (xi + a)− f (xi)] + [f (xi − a)− f (xi)]}

↔ yi ↔ zi,

(1.22)

and the potential term is modified as:

V a (x) = V (x) +
1

2

[︃∑︁
i (∆

a
i −∆i) (x)

ΨG (x)

]︃
. (1.23)

The corresponding Green’s function matrix elements are:

Gx,x′ =
(︁
Λ−Ha

x′,x

)︁
, (1.24)

and the single LRDMC iteration step is given by the following equation:

Ψn+1 (x
′) =

∑︂

x

Gx′,xΨn (x). (1.25)

The sketch of the LRDMC algorithm, a Markov chain that evolves the many-

body WF according to the Eq. (1.25), is as follows [48]: (STEP 1) Prepare
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a walker with configuration x and weight w (w0 = 1). (STEP 2) A new

configuration x′ is generated by the transition probability:

px,x′ = Gx,x′/bx, (1.26)

where

bx =
∑︂

x′
Gx′,x (1.27)

is a normalization factor. By applying the discretized Hamiltonian to a given

configuration (Ĥa |x⟩), (6N + 1) configurations |x′⟩ are determined according

to the probability px,x′ in Eq. (1.26), where N is the number of electrons in

the system [52]. This allows the evaluation of the normalization factor bx

in Eq. (1.27) even in a continuous model. Notice that 6N comes from the

diffusion of each electron in two directions (±a) and the remaining 1 stands

for the starting configuration before the possible hopping (all N electrons)

x (i.e., x′ = x). (STEP 3) Finally, update the weight with wn+1 = wnbx,

and return to the STEP I. After a sufficiently large number of iterations (the

Markov process is equilibrated), one can calculate the ground state energy E0:

E0 ≈
⟨wneL (xn)⟩

⟨wn⟩
, (1.28)

where ⟨· · ·⟩ denotes the statistical average over many independent samples

generated by the Markov chains, and eL (x) is called the (bare) local energy

that reads:

eL (x) =
∑︂

x′

Hx′,x = λ− bx. (1.29)

Indeed, the ground state energy can be calculated after many independent

n-step calculations. A more efficient computation can be realized by using

the so-called "correcting factor" technique: after a single simulation that is

much larger than the equilibration time, one can imagine starting a projection

of length p from each (n − p)th iteration. The accumulated weight for each
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projection is:

Gp
n =

p∏︂

j=1

bn−j. (1.30)

Then, the ground state energy E0 can be estimated by:

E0 ≈
∑︁

n Gp
neL (xn)∑︁
n Gp

n
. (1.31)

This straightforward implementation of the above simple method is not

suitable for realistic simulations due to fluctuations of weights, large correlation

times, the sign problems, and so on. TurboRVB implements the following

state-of-art techniques for real electronic structure calculations.

If the potential term (Eq. (1.23)) is unbounded (it is the case in ab ini-

tio calculations), the bare weight bx (Eq. (1.27)) and the local energy eL (x)

(Eq. (1.29)) significantly fluctuate, making the numerical simulation very un-

stable and inefficient. To overcome this difficulty, the code employs the impor-

tance sampling scheme [5], in which the original Green’s function is modified

using the so-called guiding function ΨG as:

G̃x′,x = Gx′,x
ΨG (x′)

ΨG (x)
, (1.32)

and the projection is modified as:

ΨG (x′)Ψn+1 (x
′) =

∑︂

x

G̃x′,xΨG (x)Ψn (x). (1.33)

In practice, the guiding function is prepared by a VMC calculation. The mod-

ified Green’s function for importance sampling G̃x′,x has the same eigenvalues

as the original one, and this transformation does not change the formalism of

LRDMC. The weight is updated by:

b̃x =
∑︂

x′

G̃x′,x, (1.34)

and the local energy with importance sampling is:

ẽL (x) =
⟨ΨG|Ĥ|x⟩
⟨ΨG|x⟩

=
∑︂

x′

Hx,x′
ΨG (x′)

ΨG (x)
. (1.35)
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Eq. (1.35) implies that if the guiding function ΨG is an exact eigenstate of the

Hamiltonian, there are no statistical fluctuations, implying the zero variance

property, namely the computational efficiency to obtain a given statistical

error on the energy improves with the quality of the variational WF. In this

respect, it is also important to emphasize that a meaningful reduction of the

statistical fluctuations is obtained by satisfying the so-called cusp conditions.

As long as they are satisfied, the resulting local energy does not diverge at the

coalescence points where two particles overlap, despite the singularity of the

Coulomb potential term (V (x) in Eq. (1.23)) [52]. In addition, the importance

sampling maintains the electrons in a region away from the nodal surface, since

the guiding function vanishes there (i.e., the right-hand side of Eq. (1.32) → 0).

This clearly enhances the efficiency of the sampling because the local energy

diverges at the nodal surface.

It is easy to identify in Eq. (1.26) the source of a crucial issue of this tech-

nique known as the sign problem: if Gx,x′ is negative Eq. (1.26) cannot have

a simple formulation in terms of stochastic process. In general the Green’s

function cannot be made strictly positive for fermions; therefore, in order

to avoid the sign problem, the fixed-node (FN) approximation has to be in-

troduced [5]. Indeed, the Hamiltonian is modified using the spin-flip term

Vsf (x) =
∑︁

x′:sx,x′>0

Hx,x′ΨG (x′)/ΨG (x):

HFN,γ
x,x′ =

⎧
⎪⎨
⎪⎩

Hx,x + (1 + γ)VSF (x) for x′ = x,

Hx,x′ for x′ ̸= x, sx,x′ < 0,

−γHx,x′ for x′ ̸= x, sx,x′ > 0,

(1.36)

where sx,x′ = ΨG (x)Hx,x′ΨG (x′) and γ ≥ 0 is a real parameter. The use of

the fixed-node Green’s function:

G̃FN
x,x′ =

(︁
Λ−HFN

x′,x

)︁ ΨG (x′)

ΨG (x)
(1.37)

can prevent the crossing of regions where the configuration space yields a sign
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flip of the Green’s function; therefore, the walkers are constrained in the same

nodal pockets and avoid the sign problem.

TurboRVB also implements the many-walker technique and the branch-

ing (denoted as reconfiguration [53] in TurboRVB) scheme for a more efficient

computation [5]. The code performs the branching as follows: (1) Set the new

weights equal to the average of the old ones:

w′
α,n = w̄ ≡ 1

Nw

∑︂

β

wβ,n. (1.38)

(2) Select the new walkers from the old ones with a probability that is propor-

tional to the old walkers’ weights:

pα,n =
wα,n∑︁
β

wβ,n

, (1.39)

which does not change the statistical average of weights, but suppresses the

fluctuations by dropping walkers having small weights. The code performs

branching (reconfiguration) after a projection time τ , that can be chosen as

a user input parameter. In practice, within the many-walker and branching

schemes, the average weights are stored and are set to one for all walkers after

each branching. The accumulated weights can be retrieved at the end of the

simulation:

Gp
n =

p∏︂

j=1

w̄n−j, (1.40)

and one can calculate the ground state energy:

E0 ≈
∑︁

n Gp
neL (xn)∑︁
n Gp

n
, (1.41)

where eL (xn) is the mean local energy averaged over the walkers, which reads

eL (xn) =

∑︁
αwα,neL (xα,n)∑︁

αwα,n

(1.42)

and is evaluated just before each reconfiguration. Notice that p is also an

input parameter, that has to be carefully chosen by the user to allow energy

convergence.
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Figure 1.3: Fixed-node energies for the all-electron carbon atom computed
within DMC, single-grid LRDMC (one lattice), and double-grid LRDMC. The
lattice discretization parameter a is mapped to the time-step τ as a =

√
τ .

From reference [48].

When λ is sufficiently large, the correlation time also becomes large be-

cause the diagonal terms of the Green’s function become very close to one

(i.e., a walker remains in the same configuration), which causes a very large

correlation time. This difficulty can be solved by considering in a different

way the diagonal and non-diagonal moves. In a given interval of M iterations,

the non-diagonal updates are efficiently calculated by sampling directly the

probability to remain in the same configuration with the generation of a single

random number. This technique can be generalized to the continuous-time

limit, namely, M → ∞, at M
Λ

= τ fixed. In the M → ∞ limit, the projection(︂
Λ− Ĥ

)︂M

is equal to the imaginary time evolution exp
(︂
−τĤ

)︂
, apart for an

irrelevant constant ΛM . The branching (reconfiguration) is performed at the

end of each time interval of length τ within the many-walker and the branching

implementation.
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In practice, there are three important features in LRDMC. First, there is

not a time-step error in LRDMC because the Suzuki-Trotter decomposition

is not necessary, unlike the standard DMC algorithm [5]. Instead, there is a

finite-size lattice size (a) error due to the discretization of the Hamiltonian

(a). Therefore, in order to obtain an unbiased FN energy, it is important to

extrapolate the LRDMC energy to the a → 0 limit by using several results

corresponding to different lattice spaces [48]. This is then consistent with

the standard DMC energy estimate (Fig. 1.3) obtained in the limit of an in-

finitely small time step. Probably one of the most important advantages of the

LRDMC method is that the extrapolation to the a → 0 limit is very smooth

and reliable, so that unbiased FN energies are easily obtained with low or-

der polynomial fits. Secondly, LRDMC can straightforwardly handle different

length scales of a WF by introducing different mesh sizes (a and a′), so that

electrons in the vicinity of the nuclei and those in the valence region can be

appropriately diffused[48, 54], which defines the so-called double-grid LRDMC.

This scheme saves a substantial computational cost in all-electron calculations,

especially for a system including atoms with a large atomic number[54].
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Chapter 2

Wave Functions

As already mentioned, the WF is the principal ingredient and the most crucial

component for VMC and DMC calculations. In this chapter I will present

the different WF ansatze that have been used for the studies presented in this

thesis with a particular focus on the Pfaffian WF (Pf). Indeed, this last one,

together with the related tools, can be considered the most important technical

advance developed in TurboRVB during my PhD. For the description of the

WFs I will mainly follow our review paper about TurboRVB[29] and our first

paper published on the Pfaffian WF[28].

Both the accuracy and the computational efficiency of QMC approaches

critically depend on the WF ansatz. The optimal ansatz is typically a tradeoff

between accuracy and efficiency. On one hand, a very accurate ansatz can

be involved and cumbersome, having many parameters and being expensive

to evaluate. On the other hand, an efficient ansatz is described only by the

most relevant parameters and can be quickly and easily evaluated. In partic-

ular, in the previous chapter, we have seen that QMC algorithms, both at the

variational and fixed-node level, imply several calculations of the local energy

eL(x) and the ratio Ψ(x)/Ψ(x′) for different electronic configurations x and x′.

The computational cost of these operations determines the overall efficiency of

QMC and its scaling with systems size.

A common choice for QMC calculations is to employ a many-body WF
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ansatz Ψ which can be written as the product of two terms:

Ψ = J(x)× ΦAS(x) , (2.1)

where the term J , conventionally dubbed Jastrow factor, is symmetric under

electron exchange, and the term ΦAS, also referred to as the determinant part

of the WF, encodes the fermionic nature of the WF and is antisymmetric. The

resulting WF Ψ is antisymmetric, thus fermionic.

In the majority of QMC applications, the chosen ΦAS is a SD ΦSD, i.e., an

antisymmetrized product of single-electron WFs. Clearly, SD alone does not

include any correlation other than the exchange. However, when a Jastrow

factor, explicitly depending on the inter-electronic distances, is applied to ΦSD

the resulting ansatz, Jastrow correlated SD (JSD), often provides already at

the variational level over 70% of the correlation energy. This last quantity is

typically defined as the difference between the exact energy and the Hartree-

Fock energy, which is the variational minimum for a SD ansatz. Thus, the

Jastrow factor proves very effective in describing the correlation, employing

only a relatively small number of parameters, and therefore providing a very

efficient way to improve the ansatz. A JSD function yields a computational

cost for QMC simulations – both VMC and FN – about ∝ N3, namely the

same scaling of most DFT codes. Therefore, although QMC has a much larger

prefactor, it represents an approach much cheaper than traditional quantum

chemistry ones, at least for large enough systems.

While the JSD ansatz is quite satisfactory for several applications, there

are situations where very high accuracy is required, and a more advanced

ansatz is necessary. The route to improve JSD is not unique, and different ap-

proaches have been attempted within the QMC community. First, it should be

mentioned that improving the Jastrow factors is not an effective approach to

achieve higher accuracy at the FN level, as the Jastrow is positive and cannot

change the nodal surface. A popular approach is through the employment of
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Figure 2.1: Ansatz hierarchy. The output of Hartree-Fock (HF) or DFT simu-
lations with different exchange-correlation functionals are special instances of
the SD ansatz. From reference [29].

backflow[55], which is a remapping of the electronic configurations that enters

into ΦAS (SD as a special case) where each electron position is appropriately

changed depending on nearby electrons and nuclei. Backflow is an effective way

to recover correlation energy, both at the variational and FN level. However, it

can be used at a price to increase significantly an already large computational

cost. Indeed, with backflow each time an electron is moved, all the entries in

ΦAS (or several of them, if cut-offs are used) have to be changed, resulting in

a much more expensive algorithm. Another possibility is to improve ΨSD sim-

ilarly to conventional quantum chemistry approaches, namely by considering

ΦAS as a linear expansion of several Slater determinants. While this second

approach can provide very high accuracy, it may be extremely expensive, as

the number of determinants necessary to remain with a pre-defined accuracy
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Figure 2.2: Ansatz conversion. From reference [29].

grows combinatorially with the system size.

The vision embraced in TurboRVB, that is also the inspiration of this

work, is that the route toward an improved ansatz should not compromise the

efficiency and good scaling of QMC. The main goal is instead to consider an

ansatz that can be implicitly equivalent to a multi-determinant expansion but

remains in practice as efficient as a single determinant.

In the following I will discuss five alternatives for the choice of ΦAS, which

correspond to ( i ) the single Slater determinant, (ii) the Antisymmetrized

Geminal Power (AGP), (iii) the Antisymmetrized Geminal Power with a con-

strained number of molecular orbitals (AGPn), (iv) the Pfaffian (Pf), (v) and

the Pfaffian with constrained number of molecular orbitals (Pfn). In particu-

lar, the AGPn has not been used for the results presented in this thesis, but

34



it will be briefly introduced for the sake of completeness.

It is interesting to observe that all the other WFs can be obtained by in-

troducing specific constraints on the most general Pf ansatz. The hierarchy

of the five ansatze is represented in the Venn diagram of Fig. 2.1. Clearly,

a more general ansatz is more accurate in the total energy but not necessar-

ily in the energy differences. Moreover, it is described by more variational

parameters, that could imply a more challenging optimization and a higher

cost. TurboRVB includes several tools to go from one ansatz to another, as

represented in Fig. 2.2. The ones concerning the Pf and the Pfn have been

developed during the work for this thesis.

In this chapter I will first introduce the basis set used for the calculations,

then I will deal with the different types of fermionic WFs: the SD, and, after

an introduction to the pairing function, the AGP, the AGPn, the Pf, and the

Pfn. In this section I will also discuss the possible conversions between the

different ansatze, focusing on the operations necessary for the conversion of

the Pf. After the fermionic part of the WF I will introduce the JF. I will

finally present a technical advance strictly related to the JPf WF: a fast and

efficient algorithm for the calculation of the spin squared expectation value.

2.1 Basis Set

In TurboRVB the electronic positions are described using localized basis sets.

In particular, for the cases presented in this thesis, we expanded the ansatze in

atom-centered basis sets of gaussian orbitals for the calculation of the JF, while

often for the fermionic part of the WF a hybrid basis set has been employed in

place of the simple uncontracted gaussian one. The CRYSTAL basis set has

been used for systems with periodic boundary conditions (PBC).

The gaussian orbitals basis set is indicated as {ϕI,ν(r)}, with each element

being the ν-th orbital centred on the I-th atom at the position RI . The
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elements in the basis set have the form

ϕI,ν(r) ∝ e−Zν |r−RI|2 [Ylν ,mν ± Ylν ,−mν ], (2.2)

where Zν is a numerical coefficient that describes how diffuse the atomic orbital

is around the atom, while Ylν ,mµ is the spherical harmonic function with angular

quantum numbers lν and mν . The sign of the combination [Ylν ,mν ± Ylν ,−mν ]

is chosen to ensure the orbital type ν to be real. This basis set has been used

without further contractions for the description of the JF and the hydrogen

atoms.

For all the other cases, for the fermionic part of our WF we have used

hybrid atomic orbitals (HO)[24, 23] to expand the electron positions over a

richer set of gaussian orbitals and, by means of the contractions, remaining

with an affordable number of variational parameters. The HOs, indeed, are

obtained as linear combinations of all the elements of the gaussian basis set

used for a given atom, labeled by I:

ϕ̄I,ω(r) =
∑︂

ν

µω,νϕI,ν(r). (2.3)

For the sake of compactness, we will indicate in the following all the basis

elements as {ϕk(r)} combining the indices ω and I, and I and ν in a single

index k for a lighter notation. This basis set has been used for the description

of the fermionic part of all the systems containing atoms with atomic number

Z > 1.

The basis set presented above works without further modifications for all

the systems in open boundary conditions (OBC), while for periodic systems

modifications are necessary. The many-body WF of a system in PBC should

satisfy the many-body Bloch condition [56, 57]:

Ψks (r1, . . . , ri +Ts . . . , rN) = eiks·TsΨks (r1, . . . , ri, . . . , rN) , (2.4)

which follows from the property that the many-body Hamiltonian is invariant

under the translation of any electron coordinate by a simulation-cell vector Ts,
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where Ts = la+mb+ nc is determined by arbitrary integers l, n,m, and the

three vectors a,b and c define the supercell.

The convention in TurboRVB is that a single-particle basis set satisfies

the following conditions:

ϕPBC
I,ν (r+Ts; ζ) = e−iks·TsϕPBC

I,ν (r; ζ) (2.5)

where ks is a twist vector (ks = (kxs , k
y
s , k

z
s)), and Ts represents an arbitrary

simulation cell vector. Notice that the use of a non-vanishing twist vector gen-

erally makes a many-body WF complex. To satisfy this condition TurboRVB

implements the CRYSTAL periodic basis[58, 5, 59]:

ϕPBC
I,ν (r; ζ) =

∑︂

Ts

ϕI,ν (r+Ts; ζ) e
iks·Ts (2.6)

where ϕI,ν is a non-periodic real atomic orbital, in our case a Gaussian orbital

(Eq. 2.2). The use of Gaussian orbitals that rapidly decay far from nuclei

guarantees that the above summation converges fast with a finite small number

of Ts. The same procedure is applied to the basis set for the Jastrow part, by

using simple periodic boundary conditions[5], because the twists do not affect

the Jastrow part of the WF, namely:

χPBC
l,m,I (r; ζ) =

∑︂

T

χl,m,I (r+Ts; ζ), (2.7)

which satisfies χPBC
l,m,I (r+Ts; ζ) = χPBC

l,m,I (r; ζ).

However, there are terms in the JF that are not defined in terms of the

above periodic basis. These terms, that will be discussed in section 2.3 in

detail, are the so-called one-body and two-body JF and have to be appropri-

ately periodized. These terms are calculated using the electron-electron and

electron-ion coordinate differences rd, expanded as:

rd = raa+ rbb+ rcc, (2.8)
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where ra, rb and rc are appropriate transformed coordinates, that are conve-

niently defined within a cube of unit length, because of the assumed periodicity

of the supercell, namely |ra|, |rb|, |rc| < 1/2. As a consequence, this mapping

makes the physical electron-electron and electron-ion distance periodic by def-

inition (i.e., they refer to the minimum distance image of the supercell). How-

ever, there may be divergences or singularities at the boundaries of this unit

cube. Therefore, before computing the distance corresponding to rd, these co-

ordinates are transformed (ra, rb, rc) → (r̄a, r̄b, r̄c) = (p(ra), p(rb), p(rc)) by use

of an appropriate function p(x), with at least continuous first derivative for

|x| < 1/2. This function is chosen to preserve the physical meaning at short

distances, i.e., p(x) = x in these cases, and being nonlinear elsewhere, in order

to satisfy not only the periodicity but also the requirement of continuous first

derivatives of the many-body WF Ψks . We have, therefore, defined p(x) as

follows:

p (x) =

⎧
⎪⎨
⎪⎩

x (−1
4
< x < 1

4
)

− 1
8(1+2x)

(−1
2
≤ x ≤ −1

4
)

1
8(1−2x)

(1
4
≤ x ≤ 1

2
).

(2.9)

and, only for the case of the long range terms of the two-body and one-body

terms of the JF, as

p (x) =

⎧
⎪⎨
⎪⎩

x (−1
6
< x < 1

6
)

− 1
54(1/2+x)2

(−1
2
≤ x ≤ −1

6
)

1
54(1/2−x)2

(1
6
≤ x ≤ 1

2
).

(2.10)

Though the modified relative distance diverges (i.e., |rd| → ∞) at the edges

of the Wigner-Seitz cell (e.g., r = ±1
2
a,±1

2
b,±1

2
c), the continuity and the

periodicity of the whole JF and its derivatives is preserved.

Finally, we remark that the many-body WF also obeys the second Bloch

condition [56, 57], namely:

Ψkp ({ri +Tp}) = eikp·TpΨkp ({ri}) , (2.11)
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where Tp represents a unit-cell (not supercell) vector, and kp is the crystal

momentum. This comes from the property that the many-body Hamiltonian

is invariant under the simultaneous translation of all-electron coordinates by

a unit-cell vector Tp. Within TurboRVB, this condition can be employed

by imposing the intra-unit cell translational symmetries on the Jastrow and

the pairing function, as simple linear constraints in the variational parameters.

However, this option is restricted to the case kp = 0.

It is possible to use different twists on each spin component, that has proven

very effective for implementing the mentioned translation symmetries within

pairing WFs[60].

2.2 Fermionic Wave Functions

The most relevant component of the WF is the fermionic element ΦAS(x).

It provides the spatial structure of the orbitals and contains the information

about the sign and the nodal surface of the WF. In this section I will present

the possible choices considered in this thesis: the SD and the ansatze based on

the pairing function.

2.2.1 Slater Determinant

In the following we will describe the SD. This WF is particularly important

for several reasons. It is the standard choice for the fermionic part of the WF

ΦAS(x) and thus it represents not only a reasonably accurate ansatz but also

a fundamental benchmark for other ansatze. Furthermore, it is necessary for

the initialization of the pairing function.

From a theoretical and computational point of view, the SD is the simplest

fermionic WF. It is built from the vacuum state by populating a number

of orthogonal single-particle molecular orbitals (MO) equal to the number of

electrons in the system. Henceforth, we omit the spin indices, by assuming
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that to each spin component corresponds a different Slater determinant. In

our basis the MOs are in the form

Φmol
α (r) =

∑︂

k=1

Pα,kϕk(r). (2.12)

The MOs can be obtained directly from a DFT or HF calculation, but they

can also be further optimized with VMC[61]. It is well known that the an-

tisymmetric product of these MO leads to the determinant of the matrix in

which every molecular orbital is evaluated for each electron position:

ΦSD(X) = det

⎛
⎜⎜⎜⎝

Φmol
1 (r1) Φmol

1 (r2) · · · Φmol
1 (rN)

Φmol
2 (r1) Φmol

2 (r2) · · · Φmol
2 (rN)

...
... . . . ...

Φmol
N (r1) Φmol

N (r2) · · · Φmol
N (rN)

⎞
⎟⎟⎟⎠ . (2.13)

For weakly correlated systems the JSD can often give reasonably good results

with a reasonable computational cost and a limited number of variational

parameters. It is also a common choice to use a linear combinations of SDs

to improve the description of the WF, with ansatze that take different names

depending on the type and number of SDs considered. In this thesis we will

compare directly the results of our WFs to the ones obtained with some of

the most successful multi-determinant WFs, the full valence complete active

space (FVCAS) WF, the full configuration interaction (FCI), and the heat-

bath configuration interaction (HCI).

2.2.2 Pairing Function

The use of the pairing function in correlated WFs allows an electronic descrip-

tion that goes beyond the single-particle picture of the SD, including also the

pair correlation that was missing in the previous case. The building block of

this WFs is named pairing (or geminal) function and has the following general

form

g(r1σ1, r2σ2) =
∑︂

k,l

λσ1σ2
k,l ϕkσ1(r1)ϕlσ2(r2), (2.14)
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where all the elements of the matrix λ represent most of the WF variational

parameters. They depend on the orbitals considered and on the spin σ1, σ2 of

the so-called geminal function g. In principle when we break the spin sym-

metry the basis sets used for ↑ and ↓ electrons can be different, otherwise the

basis chosen does not depend on the spin component. In order to set up a

consistent many-body WF starting from the geminal several choices are pos-

sible depending on the criteria adopted for the definition of the geminal. To

highlight the different possibilities we can recast Eq. (2.14) in a way in which

the spin dependency is more explicit

g(r1σ1, r2σ2) =
1√
2
(| ↑↓⟩ − | ↓↑⟩)g+(r1, r2)

+
1√
2
(| ↑↓⟩+ | ↓↑⟩)g−(r1, r2)

+ | ↑↑⟩g↑(r1, r2) + | ↓↓⟩g↓(r1, r2). (2.15)

where

g±(r1, r2) = g(r1 ↑, r2 ↓)± g(r1 ↓, r2 ↑),

gσ(r1, r2) = g(r1σ, r2σ) with σ =↑, ↓ . (2.16)

In order to satisfy the Pauli principle we have g±(r1, r2) = ±g±(r2, r1) and

gσ(r1, r2) = −gσ(r2, r1) for σ =↑, ↓. Our WF is then obtained by antisym-

metrizing the product over all the electron pairs considered that, by definition,

occupy the same pairing function. For simplicity we will enumerate the spin

up electrons from 1 to N↑ and the spin down ones from N↑ + 1 to N .

As suggested by the name Antisymmetrized Geminal Power, our goal is to

define a WF that is literally the antisymmetrized product of the geminals and

the unpaired orbitals (if present), namely

Φ(X) =
∑︂

α

Sgn(α)
(︁
g(r1ασ1α , r2ασ2α)g(r3ασ3α , r4ασ4α) · · ·

g(rp−1ασp−1α , rpασpα)Θ1(rp+1α) · · ·ΘN−p(rNα)
)︁
,

(2.17)
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where α is one of the possible ways of distributing the N electrons between

the p/2 pairs and the N − p unpaired orbitals Θ and Sgn(α) is the sign of

the corresponding permutation of the particles that is required to ensure the

fermionic behavior. In particular, different choices of the pairing function,

obtained by excluding one or more terms in the Eq. (2.16), lead to different

ways to compute Eq. (2.17). These choices also impact quantitatively and

qualitatively on the kind of physics that we can describe by means of this

type of WF. Therefore, we will distinguish in the following among the possible

distinct cases. If we consider only the singlet term in Eq. (2.16) we obtain

the AGP. An extension of the AGP is the broken symmetry AGP (AGPu)

where we break the spin symmetry including the Sz = 0 triplet term, without

considering the parallel spin triplet terms. The most general case, where we

include all the triplet and the singlet terms, defines the Pf WF. In addiction

to these three cases, there is the possibility to define the AGP and the Pf WFs

with a constrained number of MOs, respectively the AGPn and the Pfn.

2.2.3 AGP

Let me consider for the moment the unpolarized caseN↑ = N↓, the extension to

the polarized cases will be straightforward and will be discussed later on. When

no triplet correlations are allowed we build the WFs using only singlet pairs

and the pairing function in Eq. (2.15) contains only the symmetric element g+

g(r1σ1, r2σ2) =
1√
2
(| ↑↓⟩ − | ↓↑⟩)g+(r1, r2). (2.18)

In this case we project a perfect singlet that we denote as AGP. The λ matrix

elements in Eq. (2.18) are non zero only for σ1 ̸= σ2 and they are symmetric

for spin exchange. In order to calculate the AGP we can write all the possible

42



combinations of pairs of opposite spin electrons in a matrix defined as

G =

⎛
⎜⎜⎜⎝

g(r1 ↑, rN↑+1 ↓) g(r1 ↑, rN↑+2 ↓) · · · g(r1 ↑, rN ↓)
g(r2 ↑, rN↑+1 ↓) g(r2 ↑, rN↑+2 ↓) · · · g(r2 ↑, rN ↓)

...
... . . . ...

g(rN↑ ↑, rN↑+1 ↓) g(rN↑ ↑, rN↑+2 ↓) · · · g(rN↑ ↑, rN ↓)

⎞
⎟⎟⎟⎠ . (2.19)

In this way to each row of the matrix corresponds an electron of spin ↑, and

to each column an electron of spin ↓. The definition of the matrix G in this

form is convenient because it allows the antisymmetrization requested by the

Eq. (2.17) in a simple and efficient way. Indeed, it can be demonstrated[23]

that the correct antisymmetrization of the pairs considered in this case is given

by

ΦAGP (X) = det{G}. (2.20)

This is somehow intuitive because we want to sum all the possible products

of N/2 matrix elements of G, where in all these factors a column element or

a row element is present only once, exhausting all the possible configurations

of the system considered with an appropriate ± sign that, in this case, is just

given by the one corresponding to the determinant of G.

When the system is polarized and N↑ ̸= N↓, we cannot build the solution

using only the singlet terms, because the matrix G written as in Eq. (2.19) is

a rectangular matrix and its determinant cannot be computed. Supposing for

simplicity that N↑ > N↓, in this case we have to add a number N↑ − N↓ of

unpaired spin-up MOs {Θi(r)} not only for fulfilling the polarization required

but, most importantly, to turn the matrix G to a perfectly defined square

matrix:

G =

⎛
⎜⎜⎜⎝

g(r1 ↑, rN↑+1 ↓) · · · Θ1(r1) · · · ΘN↑−N↓(r1)
g(r2 ↑, rN↑+1 ↓) · · · Θ1(r2) · · · ΘN↑−N↓(r2)

... . . . ... . . . ...
g(rN↑ ↑, rN↑+1 ↓) · · · Θ1(rN↑) · · · ΘN↑−N↓(rN↑).

⎞
⎟⎟⎟⎠ (2.21)

Also in this case a consistent antisymmetric wave function can be again
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calculated as the determinant[23] of the matrix G exactly in the same way of

the singlet pairing in Eq. (2.20).

AGPu

The AGPu is an extension of the AGP where also the Sz = 0 triplet component

is included and only the parallel spin terms of the triplet are omitted. This

means that the spin symmetry is broken and a magnetic order parameter can

be directed only along the z−quantization axis. This WF is called broken

symmetry AGP (AGPu) and the difference from the previous AGP is the

presence of the antisymmetric g− component in the definition of the pairing

function in Eq. (2.15), that for this case is

g(r1σ1, r2σ2) =
1√
2
(| ↑↓⟩ − | ↓↑⟩)g+(r1, r2)

+
1√
2
(| ↑↓⟩+ | ↓↑⟩)g−(r1, r2). (2.22)

In order to define this pairing function, we break the spin symmetry in the

opposite electron spin case with σ1 ̸= σ2, by keeping equal to zero the σ1 = σ2

components of Eq. (2.14). With exactly the same procedure used in the case

of the AGP, depending on the polarization, we can build the same matrix G

of Eq. (2.19) or Eq. (2.21), that now is no longer symmetric. Even in this case

the correct antisymmetrized sum of these pairs is given by the determinant[23].

Thus, analogously to Eq.(2.20) we obtain

ΦAGPu(X) = det{G}, (2.23)

that implements the simplest broken symmetry ansatz based on the pairing

function.

2.2.4 Pfaffian Wave Function

The Pfaffian WF is the most important among the pairing functions ansatze

presented so far, being the most general one and encoding new variational
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(a)

(b)

Figure 2.3: Cartoon picture of a typical valence bond generated by the AGP
WFs (on the upper panel) and the Pf WF (on the lower panel). The balls
indicate the electrons, singlet and triplet bonds are displayed with cyan and
orange colors, respectively. From reference [33].

freedoms into the AGP and the AGPu. In next chapters it will become clear

that it represents the most powerful description of the chemical bond within

the paradigm developed in this work. This WF represents also the most general

mean-field state, namely the GS of a mean-field Hamiltonian containing also

BCS anomalous terms projected on a given number N of particles and total

spin projection Sz
tot =

∑︁
i=1

σi along the z−quantization axis. In this case the
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definition of the pairing function is exactly the one in Eq. (2.15), containing all

the terms including the parallel spin terms of the triplet as graphically pictured

in Fig. 2.3. This means that now, when we build the Pf, we have to include

in the WF also the parallel spin electron pairs. In this way the Pf can also

describe a magnetic order parameter in any direction of the space, and thus it

is also possible to rotate the spin component of the WF in any direction. This

will allow us to break the symmetry along the spin quantization axis and then

to rotate it. As we will explain later, this plays a crucial role when we use this

WF in combination with our JF, since it allows us to preserve the total Sz of

the molecules and include spin fluctuations.

Of course, we cannot create a WF using only pairs if the number of elec-

trons in the system is odd, so, for the moment, let us assume N is even. The

extension to the odd number of electrons is trivial and will be discussed im-

mediately after. We will dub as W the matrix containing all the possible pairs

W =

⎛
⎜⎜⎜⎜⎜⎝

0 g(r1 ↑, r2 ↑) · · · g(r1 ↑, rN ↓)
g(r2 ↑, r1 ↑) 0 · · · g(r2 ↑, rN ↓)

...
... . . . ...

g(rN−1 ↓, r1 ↑) g(rN−1 ↓, r2 ↑) · · · g(rN−1 ↓, rN ↓)
g(rN ↓, r1 ↑) g(rN ↓, r2 ↑) · · · 0

⎞
⎟⎟⎟⎟⎟⎠
, (2.24)

where the matrix is antisymmetric for the fermionic commutation rules and

thus the elements of the diagonal are set to zero. We can recast the W high-

lighting its different spin sectors as

W =

(︃
W↑↑ W↑↓
W↓↑ W↓↓

)︃
(2.25)

where W↑↑ and W↓↓ are respectively a N↑ ×N↑ and a N↓ ×N↓ antisymmetric

matrices that take into account the parallel spin terms of the triplet, while W↑↓

is a N↑ × N↓ matrix such that W↑↓ = −W T
↓↑ describing the remaining triplet

and singlet contributions. In the case of AGP and AGPu we can also build a

similar matrix where the matrices W↑↑ and W↓↓ are identically zero.
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Analogously to the case of the AGP and AGPu, we have to identify a way

to calculate the antisymmetric product of all the pairs considered. In this case

we can identify the antisymmetrization procedure defined in Eq. (2.17) as the

Pfaffian of the matrix W . After introducing a few algebraic definitions, the

reason will be clear to the reader.

The Pfaffian is an algebraic operation acting on antisymmetric square ma-

trices with an even number of rows and columns. Being N even, the matrix

W satisfies these hypotheses. The usual definition of the Pfaffian, requires the

introduction of the concept of partition of the matrix W

A(α) = sign(α)

N/2∏︂

k=1

Wik,jk (2.26)

where all ik and jk are different, ik < jk for each k and i1 < i2 < · · · < iN .

The sign(α) is given by the permutation that orders the vector of the indices

{i1, j1, i2, j2, . . . , iM , jM}. In this way all the indices are considered only once.

The Pfaffian is then defined as

Pf(W ) =
∑︂

α

A(α) (2.27)

where the sum over α is extended over all the possible partitions. However, an

alternative definition[62] of the Pfaffian can better clarify the correspondence

to the Eq. (2.17). It can indeed be defined alternatively as

Pf(W ) =
[︁
(N/2)!2N/2

]︁−1∑︂

P

sign(P )
N/2∏︂

kP=1

WikP ,jkP
(2.28)

where P now represents a generic permutation of the possible row and column

indices of the matrix without any constraints and the sign(P ) is the parity of

the permutation. In this definition it is easy to recognize the antisymmetrized

sum corresponding to the Eq. (2.17). Let us introduce now a further property

of the Pfaffian that will be useful in the following. In the following we will
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indicate with 0 a m × m matrix containing only 0 and B a generic m × m

matrix, we have that

Pf
[︃

0 B
−BT 0

]︃
= (−1)m(m−1)/2 det(B). (2.29)

For an odd number of electrons it is necessary to use a spin-dependent

unpaired orbital Θσ(r) so that we can accommodate the remaining electron

that is not considered by the product of the pairs. The unpaired orbital in-

troduces a supplementary row and column to the matrix W . Being Θ↑ =

(Θ↑(r1),Θ↑(r2), · · · ,Θ↑(rN↑)) the vector containing the values of the unpaired

orbital Θ↑ at the ↑ electron positions and Θ↓ = (Θ↓(rN↑+1),Θ↓(rN↑+2), · · · ,Θ↓(rN))

the one calculated for the ↓ electron ones, we modify the matrix in Eq. (2.25)

as

W =

⎛
⎝
W↑↑ W↑↓ Θ↑
W↓↑ W↓↓ Θ↓
−ΘT

↑ −ΘT
↓ 0

⎞
⎠ . (2.30)

Also in this case the permutation sum implied by the Pfaffian leads to the

correct antisymmetrization required from Eq. (2.17). The matrix W satisfies

the hypothesis of the calculation having an even leading matrix dimension

N̄ = N + 1. We can further notice that no assumption has been made on the

polarization of the system and so no unpaired orbital is required except for a

single one in case of odd N .

It is however possible in principle to introduce further pairs of unpaired or-

bitals, if, for example, we want to describe an AGP or AGPu with a full Pf WF.

We define Θiσ(r) as the set of the considered m unpaired orbitals and Θi↑ =

(Θi,↑(r1),Θi,↑(r2), · · · ,Θi,↑(rN↑)) the vector containing the values of the un-

paired orbital Θi,↑ for the ↑ electron positions and Θi↓ = (Θi,↓(rN↑+1),Θi,↓(rN↑+2), · · · ,Θi,↓(rN))

the one calculated for the ↓ electron ones. We can modify the matrix in
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Eq. (2.25) as

W =

⎛
⎜⎜⎜⎜⎜⎝

W↑↑ W↑↓ Θ1↑ · · · Θm↑
W↓↑ W↓↓ Θ1↓ · · · Θm↓

−ΘT
1↑ −ΘT

1↓ 0
. . . ...

...
...

... . . . ...
−ΘT

m↑ −ΘT
m↓ 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠
, (2.31)

that is a N̄ × N̄ matrix where N̄ = N +m. We can again antisymmetrize this

product using the definition of the Pfaffian provided in Eq. (2.28). A careful

reader could have noticed that, by applying the Pfaffian definition, we are

antisymmetrizing not only over the electron indices but also over the orbital

indices of the unpaired orbitals. This antisymmetrization, however, contains

the one over the physical electrons and leads therefore to a physically allowed

electronic wave function.

Moreover, we can notice that, by using the previous definition, we can

identify the AGP and the AGPu as sub-cases of the general Pf. Indeed, by

using the expressions of the pairing function and the unpaired orbitals of the

AGP and AGPu we obtain W↑↑ = 0, W↓↓ = 0, Θi↓ = 0 and N̄ = 2N↑. By

merging Eq. (2.21) and Eq. (2.25) we can define

W =

(︃
0 G

−GT 0

)︃
, (2.32)

and this means that applying Eq. (2.29) we immediately obtain

Pf (W ) = ± det(G), (2.33)

where the sign only depends on the number of electrons and is constant, thus

irrelevant. This shows in a straightforward way that the AGP and AGPu

defined in the previous subsection are nothing but particular cases of the most

general Pf.

49



2.2.5 AGP and Pf with a constrained number of molec-
ular orbital (AGPn and Pfn)

A convenient way to impose constraints on the variational parameters defining

the AGP or Pf WF is obtained by rewriting the expansion of the geminal

in terms of molecular orbitals (MOs). As shown in Eq. (2.14), a geminal

g(r1σ1, r2σ2) there are no restrictions on the nature of the orbitals {ϕiσ(r)}.
The sum can be extended over a set of atomic orbitals as well as over a set

of orthogonal MOs. This last choice can be convenient to control the number

of variational parameters while maintaining some of the AGP and Pf physical

properties. Let us start considering Eq. (2.14) in terms of atomic orbitals. In

order to simplify the notation here, let us merge the atomic orbital and spin

indices in a unique one that is indicated with a greek symbol (e.g., µ↔ (i, σ))

running from 1 to the total dimension 2L of the atomic orbitals used, L for

each spin component. Using this shortened notation we rewrite Eq. (2.14) as

g(i, j) = g(riσi, rjσj) =
∑︂

µ,ν

λµ,νϕµ(i)ϕν(j) (2.34)

where clearly the symmetry of g implies that λµ,ν = −λν,µ. The coefficients

λµ,ν define a 2L×2L skew-symmetric matrix λ. If we define the 2L dimensional

vector Φi = (ϕ1(i), . . . , ϕ2L(i))
T , Eq. (2.34) rewrites as g(i, j) = ΦT

i λΦj. More-

over, the overlaps Sµ,ν ≡ ⟨ϕµ|ϕν⟩ between atomic orbitals define the overlap

matrix S, that in the case of a spin-dependent basis is block diagonal:

S =

[︃
Suu 0
0 Sdd

]︃
(2.35)

with Suu and Sdd positive definite L × L square matrices (Suu = Sdd when

orbitals are the same for spin up and spin down). In TurboRVB, the overlap

matrix S is computed on a suitable uniform mesh with an efficient and general

parallel algorithm. Then an orthonormal basis is defined:

ϕ̃µ(i) =
∑︂

ν

S−1/2
µ,ν ϕν(i) (2.36)
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where S−1/2 is well defined since S is strictly positive definite.1 The matrix

elements of g can be recasted in the new orthonormal basis
{︂
ϕ̃µ(i)

}︂
, yielding

g(i, j) =
∑︁2L

µ,ν λ̃µ,νϕ̃µ(i)ϕ̃ν(j) = Φ̃
T

i ÃΦ̃j, with the matrix λ̃ ≡ S1/2λS1/2 that is

antisymmetric.

At this point, from the spectral theory of skew-symmetric matrix, as it will

be shown in the section 2.2.6, it is possible to perform the Youla decomposition

of λ̃[28], which can be written in the form λ̃ = QΣQT , where Q is unitary

(also real if λ̃ is real), and the matrix Σ is block diagonal with Σ2k−1,2k =

ak = −Σ2k,2k−1 for k = 1, ..., L, and zero everywhere else, with ak ≥ 0. So,

the pairing function g(i, j) can be written as ΨT
i ΣΨj, where Ψi = QT Φ̃i for

each i. This defines a basis of L MOs {ψk(i)} and corresponding twinned ones
{︁
ψ̄k(i)

}︁
, forming together a basis of 2L mutually orthonormal elements for

which the original geminal function reads:

g (i, j) =
L∑︂

k=1

ak
[︁
ψk(i)ψ̄k(j)− ψ̄k(i)ψk(j)

]︁
(2.37)

with ak ≥ 0. After these transformations, the MOs can be finally written in

the chosen (hybrid) atomic basis:

ψk(i) =
2L∑︂

ν=1

Pµ,lϕµ(i)

ψ̄k(i) =
2L∑︂

ν=1

P̄ µ,lϕµ(i) (2.38)

by appropriate p × 2L rectangular matrices P and P̄ . Then, with no loss

of generality, we can assume that the molecular orbitals
{︁
ψk(i), ψ̄k(i)

}︁
are

ranked such that a1 ≥ a2 ≥ . . . ≥ aL ≥ 0. The above expression highlights
1S−1/2 can be computed after a standard block diagonalization of the matrix S = UDU†,

being U a unitary matrix and D = diag{d1, . . . , d2L} is a diagonal matrix, such that S−1/2 =
UD−1/2U†, where D−1/2 is the diagonal matrix obtained by taking the inverse square root
of each diagonal element di of D. At this stage, we carefully remove from the basis the
elements corresponding to the smallest eigenvalues di in order to work with a sufficiently
large condition number that guarantees stable finite precision numerical calculations.
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that the most important MOs are those corresponding to the larger values of

ak. Therefore, it is possible to constrain the variational freedom by neglecting

all the orbitals with k > n, yielding the pairing function:

gn (i, j) =
n∑︂

k=1

ak
[︁
ψk(i)ψ̄k(j)− ψ̄k(i)ψk(j)

]︁
, (2.39)

where n is conveniently chosen and is ≪ L. This yields the AGPn ansatz

and the ΦAGPn WF, which can be useful to improve the stability of the wave-

function optimization. The corresponding algorithm, based on projection op-

erators in the space of the n molecular orbitals considered, has been described

extensively in Ref.[5]. Moreover, in the original paper[61] introducing the

AGPn, a precise recipe was given to improve the evaluation of the binding

energies. Indeed, despite a constraint on the variational parameters necessar-

ily increases the variational energy expectation value, energy differences may

actually improve by an appropriate choice of n. In the mentioned work[61],

this promising approach was applied with an AGP containing only singlet cor-

relations, but the binding energies were defined without using a rigorous size

consistent criterium. This drawback can be now removed, by exploiting the

full variational freedom of the Pf WF combined with a general spin-dependent

Jastrow factor.

The variational optimization of an AGP with a fixed number n of molecular

orbitals can be easily generalized to the Pf case, by exploiting that the con-

strained Pf WF, dubbed Pfn, can be written either in the canonical form with

MOs as in Eq. (2.39) or in the localized basis set expansion, as in Eq. (2.34),

with a corresponding matrix λnµ,ν =
n∑︁

k=1

ak
[︁
Pµ,kP̄ ν,k − Pν,kP̄ µ,k

]︁
.

According to Eq. (2.39) a small but arbitrary variation δgn of the con-
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strained pairing function gn reads:

δgn (i, j) =
n∑︂

k=1

δak
[︁
ψk(i)ψ̄k(j)− ψ̄k(i)ψk(j)

]︁

+
n∑︂

k=1

ak
[︁
δψk(i)ψ̄k(j)− δψ̄k(i)ψk(j)

]︁

+
n∑︂

k=1

ak
[︁
ψk(i)δψ̄k(j)− ψ̄k(i)δψk(j)

]︁
(2.40)

and therefore satisfies the following property, as it will be shown later:

(Î − L)δgn(Î −R) = 0 (2.41)

where Î is the identity operator, L and R are projection operators over the oc-

cupied MOs, i.e., L2(i, j) =
∫︁
dkL(i,k)L(k, j) = L(i, j), and similarly R2 = R,

where here and henceforth the shorthand integration symbol
∫︁
dk =

∑︁
σk

∫︁
drk

contains implicitly also the spin summation. These operators are then defined

as follows:

L(i, j) =
n∑︂

k=1

[︁
ψk(i)ψ

∗
k(j) + ψ̄k(i)ψ̄

∗
k(j)

]︁

R(i, j) =
n∑︂

k=1

[︁
ψ∗
k(i)ψk(j) + ψ̄

∗
k(i)ψ̄k(j)

]︁
. (2.42)

With the above definitions, Eq. (2.40) is easily verified because each term

of Eq. (2.40) is annihilated either by the left (Î − L) or the right (Î − R)

projection over the unoccupied MOs. Notice that L = R in the real case and

L = R∗ in the most general complex case. In this way, in order to implement

a constrained variation δgn of the Pfn WF, corresponding to an appropriate

variation of its matrix δλnµ,ν , it is useful to work with a small free variation δg

(with corresponding δAµ,ν). This is then projected onto the chosen restricted

ansatz by means of the following equation:

δgn = δg − (Î − L)δg(Î −R). (2.43)
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Indeed, it is easy to show that the right-hand side of the above equation van-

ishes if we apply Î − L and Î − R to its left and its right, respectively, just

because Î −R and Î −L are projection operators, being such R and L, yield-

ing (Î −R)2 = (Î −R) and (Î − L)2 = (Î − L), from which Eq. (2.43) fulfills

Eq. (2.41). Eq. (2.43) represents, therefore, a linear relation applied to the

variational parameter matrix change δaµ,ν corresponding to the unconstrained

geminal g in Eq. (2.34), yielding the new constrained variation δanµ,ν . Indeed,

by using the definitions of the projector operators in Eq. (2.42) and the expan-

sion of the MOs in the atomic (hybrid) basis the implementation of Eq. (2.43)

turns to a number of matrix-matrix operations acting on λ, P , P̄ and the

overlap matrix S that can be easily and efficiently worked out[5].

This linear relation between λ and λn can be therefore easily implemented

together with the corresponding derivatives necessary to the optimization of

the energy 2 and allows the explicit calculation of the new matrix λnµ,ν , yielding

the new constrained geminal gn + δgn. Then the new geminal can be recasted

in the form of Eq. (2.39) by the mentioned diagonalization of skew-symmetric

matrices, presented in the subsection 2.2.7, in this way implicitly neglecting

nonlinear contributions that are irrelevant close to convergence, when δgn → 0.

After employing several iterations of this type, the lowest energy ansatz of the

Pfn type can be obtained in a relatively simple and very efficient way.

It is also important to emphasize that this constrained optimization algo-

rithm allows a further reduction of the number of parameters, by efficiently

exploiting locality, namely that variational parameters λµ,ν corresponding to

atoms at a distance larger than a reasonable cutoff can be safely disregarded

with negligible error[5].

Finally, we can notice that if n is equal to half the number of electrons, the
2The output of AAD are matrices Dµ,ν = ∂F

∂λµ,ν
where F is either the log of the WF

or the corresponding local energy computed on a given configuration. Then the projected
derivatives corresponding to δλn

µ,ν easily follows from Eq. (2.43), by applying the chain rule.
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AGPn and the Pfn are equivalent to a SD.

2.2.6 Conversion of the Wave Functions

The choice of the proper ansatz depends on the target system, considering the

computational cost of a chosen ansatz and the relevant physical and chemical

properties of a target material. During the simulation, it can be convenient (or

necessary) to go back and forth between the ansatze, with/without losing the

information of an optimized ansatz (Fig. 2.2). The first case is to add molec-

ular orbitals to an ansatz, i.e., AGP ⇒ SD, AGP ⇒ AGPn, or Pf ⇒ Pfn.

In TurboRVB, this is obtained by rewriting the expansion of the geminal in

terms of molecular orbitals, as shown in the previous section. This operation

requires to solve the eigenvalues and eigenvectors problem of the parameters

matrix. For the AGP this means that one has to diagonalize a symmetric

matrix (using the standard LAPACK routines[63]). For the Pf WF, instead,

one has to deal with an antisymmetric matrix. In the section 2.2.7, I will

describe a fast and general procedure to transform a generic complex antisym-

metric matrix into a canonical Youla’s form that represents the equivalent of

the standard diagonalization of Hermitian matrices.

The second important case is to convert an ansatz among the available

ones, i.e., SD, AGP, or AGPn ⇒ AGP or Pf, Pfn ⇒ Pf. This is achieved by

maximizing the overlap between the two WFs. In more details, in TurboRVB,

the following overlap between two geminals is maximized:

maxQ =
⟨gnew|gori⟩2

⟨gnew|gnew⟩⟨gori|gori⟩ , (2.44)

in order to obtain new geminal matrix coefficients λnew
µ,ν , defining the new pair-

ing function as:

gnew (i, j) =
∑︂

µ.ν

λnew
µ.ν ϕ

new
µ (i)ϕnew

ν (j), (2.45)
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while the original geminal was given in terms of the parameter matrix λori
µ,ν :

gori (i, j) =
∑︂

µ,ν

λori
µ,νϕ

ori
µ (i)ϕori

ν (j). (2.46)

Notice that 0 ≤ Q ≤ 1; therefore the larger is Q, the better is the conversion,

and Q approaches the unit value if the conversion is perfect.

The final case is to convert a AGP ansatz to Pf. Since the AGP ansatz

is a special case of the Pf one, where only W↑↓ and W↓↑ terms are defined

as described in section 2.2.4, the conversion can be realized just by direct

substitution. Therefore, the main challenge is to find a reasonable initialization

for the two spin-triplet sectors W↑↑ and W↓↓ that are not described in the AGP

and that otherwise have to be set to 0. There are two possible approaches[28].

For polarized systems, we can build the W↑↑ block of the matrix by using an

even number of unpaired orbitals {Θi} and build an antisymmetric W↑↑ by

means of Eq. (2.39), where the eigenvalues ak are chosen to be large enough to

occupy certainly these unpaired states, as in the standard Slater determinant

used for the initialization. This works only for polarized systems. The second

approach that also works in a spin-unpolarized case is to determine a standard

broken symmetry single determinant ansatz (e.g., DFT within the LSDA) and

modify it with a global spin rotation. Indeed, in the presence of finite local

magnetic moments, it is often convenient to rotate the spin moments of the

WF in a direction perpendicular to the spin quantization axis chosen for our

spin-dependent Jastrow factor, i.e., the z quantization axis. In this way one

can obtain reasonable initializations for W↑↑ and W↓↓. The corresponding tool

developed in TurboRVB allows every possible rotation, including an arbitrary

small one close to the identity. A particularly important case is when a rotation

of π/2 is applied around the y direction. This operation maps

| ↑⟩ → 1√
2
(| ↑⟩+ | ↓⟩) and | ↓⟩ → 1√

2
(| ↑⟩ − | ↓⟩) . (2.47)

One can convert from an AGP the pairing function that is obtained from a
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VMC optimization:

gAGP (i, j) = g+(ri, rj)
|↑↓⟩ − |↓↑⟩√

2
+ g−(ri, rj)

|↑↓⟩+ |↓↑⟩√
2

(2.48)

to a Pf one:

gAGP (i, j) → g (i, j) = g+(ri, rj)
|↑↓⟩ − |↓↑⟩√

2
+ g−(ri, rj) (|↑↑⟩ − |↓↓⟩) . (2.49)

This transformation provides a meaningful initialization to the Pf WF that

can be then optimized for reaching the best possible description of the ground

state within this ansatz.

2.2.7 Diagonalization of a antisymmetric generally com-
plex matrix λ

In the following we will discuss a general procedure to transform a generic

complex antisymmetric matrix into a canonical Youla’s form that represents

the equivalent of the standard diagonalization of Hermitian matrices. This is

obtained by means of an appropriate unitary matrix U defined by an orthonor-

mal set of states that we will call in the following MOs.

Given a N̄ × N̄ antisymmetric matrix λ, our goal is to identify a set of p

paired states {(ϕ1
j , ϕ

2
j)} of orthonormal MOs, such that p ≤ N̄ is even and

λϕ1
j = ajϕ

2
j (2.50)

λϕ2
j = −ajϕ1

j , (2.51)

where the left-hand side of the above equations indicates standard matrix

vector products, with shorthand notations adopted also in the remaining part

of this appendix. In this basis we can write any skew-symmetric matrix λ in
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the canonical Youla’s form:

λMO =

⎛
⎜⎜⎜⎜⎜⎝

0 a1 0 0 · · · 0
−a1 0 0 0 · · · 0
0 0 0 a2 · · · 0
0 0 −a2 0 · · · 0
...

...
...

... . . . ...

⎞
⎟⎟⎟⎟⎟⎠
, (2.52)

using only p/2 strictly positive parameters aj. These ones play the same role

of the eigenvalues for an ordinary Hermitian matrix and henceforth we will use

this name for them, even if the matrix λMO is not diagonal but represents the

simplest non-vanishing skew-symmetric matrix.

The transformation of the original matrix λ to the corresponding canonical

Youla’s form by means of an appropriate unitary transformation λ = U∗λMOU
†

provides us also a very simple way to regularize the matrix λ by replacing the

too small eigenvalues with reasonable lower bounds.

In the case of odd N̄ it will be shown later that there exists always an eigen-

vector of λ with vanishing eigenvalue, but the decomposition remains possible,

as λMO will contain at least one vanishing row and corresponding column. In

the following, we define that an eigenvector is singular if it corresponds to a

vanishing eigenvalue, as in the odd N̄ case.

It would be ideal for this calculation to use a very robust and stable diago-

nalization routine to maintain machine accuracy for the MOs. Unfortunately,

these routines are not commonly available for antisymmetric matrices and thus

several mathematical transformations are necessary to map our task to a se-

quence of more commonly used or at least easily available algorithms.

A generic N̄ × N̄ antisymmetric matrix is written in the following way:

λ =

⎛
⎜⎜⎜⎜⎜⎝

0 a1,2 a1,3 · · · a1,N̄
−a1,2 0 a2,3 · · · a2,N̄
−a1,3 −a2,3 0 · · · a3,N̄

...
...

... . . . ...
−a1,N̄ −a2,N̄ −a3,N̄ · · · 0

⎞
⎟⎟⎟⎟⎟⎠
. (2.53)
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The first step is to transform λ in a tridiagonal antisymmetric real matrix.

This operation is implemented in the subroutine zsktrd (dsktrd) contained in

the PFAPACK library [64]. The use of the Householder algorithm allows us

to decompose the generic matrix λ as

λ = U∗
1λTrU

†
1 , (2.54)

where U1 is the transformation matrix output of the algorithm, while λTr is a

tridiagonal real antisymmetric matrix written in the standard tridiagonal form

λTr =

⎛
⎜⎜⎜⎝

0 b1 0 · · · 0
−b1 0 b2 · · · 0
0 −b2 0 · · · 0
...

...
... . . . ...

⎞
⎟⎟⎟⎠ . (2.55)

Thus we can multiply the matrix λTr for the imaginary unit i, yielding a

more conventional tridiagonal hermitian matrix λiH , defined by purely imagi-

nary matrix elements.

We highlight that it is possible to map the matrix λiH into a real hermitian

matrix via a unitary transformation and use the appropriate LAPACK routine

for its fast diagonalization. This procedure is well known and will be discussed

later.

At this point, we can use the spectral theorem for Hermitian matrices

to decompose the matrix λiH = ψλdiagψ
†, where λdiag is a diagonal matrix

containing in its diagonal part the real eigenvalues ai of λiH and ψ is the unitary

matrix, where each column is given by the eigenvector, in principle complex,

corresponding to each eigenvalue, in the chosen order. This decomposition

implies:

λ = −iU∗
1ψλdiagψ

†U †
1 . (2.56)

However, since the matrix ψ is generally complex and ψ† ̸= ψT , some manip-
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ulation is necessary if we want to satisfy the skew-symmetry property of λ, in

an easy and transparent way.

If we consider one eigenvector ψ̄j associated to an eigenvalue aj > 0 we

have that

λiHψ̄j = iλTrψ̄j = ajψ̄j, (2.57)

the complex conjugate of this expression is

−iλTrψ̄
∗
j = −ajψ̄∗

j , (2.58)

where we have used that both λTr and the eigenvalues aj are real. This means

that if ψ̄j is an eigenvector of λiH relative to the eigenvalue aj, then ψ̄
∗
j is

an eigenvector corresponding to the eigenvalue −aj and thus orthogonal to

ψ̄j because of the orthogonality between eigenvectors of a Hermitian matrix

corresponding to different eigenvalues ±aj. We can thus easily verify, by using

the relations given in Eq. (2.57) and Eq. (2.58), the following simple equations3:

λiH(ψ̄j + ψ̄
∗
j) = aj(ψ̄j − ψ̄

∗
j) (2.59)

λiH(ψ̄j − ψ̄
∗
j) = aj(ψ̄j + ψ̄

∗
j) (2.60)

. In this way we can define pairs of real orthogonal vectors ψ̄1
j =

√
2 Re(ψ̄j)

and ψ̄2
j =

√
2 Im(ψ̄j) such that

λiHψ̄
1
j = iajψ̄

2
j (2.61)

λiHψ̄
2
j = −iajψ̄1

j . (2.62)

Once we have identified all the pairs corresponding to all positive eigenvalues

aj > 0 we can write the unitary matrix ψ̄ that is now real, by adding the

remaining eigenvectors (that can be also chosen real as shown in the following)
3The same argument holds if the eigenvalue aj corresponds to p > 1 degenerate eigenvec-

tors. The mentioned orthogonality property of Hermitian matrix eigenvectors leads to the
straightforward definition of p pairs of mutually orthonormal real ones used for the present
decomposition with a block diagonal matrix, where each 2 × 2 block corresponds to one of
the p degenerate eigenvectors.
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with vanishing eigenvalues in the remaining rightmost columns. In this way

we can finally define a unitary real matrix ψ̄ yielding λTr = −iλiH = ψ̄λMOψ̄
T

where λMO is defined in Eq. (2.52) and therefore by using Eq. (2.54)

λ = U∗
1 ψ̄λMOψ̄

T
U †
1 . (2.63)

which represents the desired decomposition because the product of two unitary

matrices U∗ = U∗
1 ψ̄ remains a unitary matrix and its transpose U † coincides

with ψ̄T
U †
1 , yielding λ = U∗λMOU

†.

Triangular hermitian matrices: a mapping from imaginary to real

In order to use the LAPACK routines for the diagonalization we have to map

the tridiagonal fully imaginary hermitian matrix λiH , defined only (the diag-

onal elements are zero to fulfill hermitianity) by its upper diagonal elements

ibj with bj real for j = 1, 2, · · · N̄ − 1, into a tridiagonal real symmetric matrix

λR. We can implement this mapping by applying a unitary transformation to

the matrix λiH . For this purpose we introduce the following transformation

described by the matrix U2

λR = U †
2λiHU2. (2.64)

The matrix U2 is a complex diagonal matrix defined as

U2 =

⎛
⎜⎜⎜⎝

eiϕ1 0 · · · 0
0 eiϕ2 · · · 0
...

... . . . ...
0 0 · · · eiϕN̄−1

⎞
⎟⎟⎟⎠ . (2.65)

The explicit calculation of the right-hand side of the Eq. (2.64) gives

λR =

⎛
⎜⎜⎜⎝

0 ib1e
i(ϕ2−ϕ1) 0 · · · 0

−ib1ei(ϕ1−ϕ2) 0 ib2e
i(ϕ3−ϕ2) · · · 0

0 −ib2ei(ϕ2−ϕ3) 0 · · · 0
...

...
... . . . ...

⎞
⎟⎟⎟⎠ . (2.66)
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By setting the imaginary units ±i = exp
(︁
±iπ

2

)︁
(when not exponentiated in

the previous equation), we can easily impose that all the phase factors cancel

in all the corresponding matrix elements of λR with the choice:

ϕj = −π
2
(j − 1), (2.67)

that, therefore, implies that λR, with the above definition, is a real symmet-

ric matrix. At this point we can diagonalize the matrix λR by means of a

real unitary matrix UR, that is the output of a standard LAPACK diagonal-

ization routine of tridiagonal real matrices (e.g. dstevx for double-precision

arithmetic). In this way λiH can be diagonalized as λiH = U2URλdiagU
T
RU

†
2

where λdiag is a diagonal matrix containing the corresponding eigenvalues of

the LAPACK diagonalization.

Singular eigenvectors

Within this formulation it is also particularly easy to compute all the real sin-

gular eigenvectors of λiH corresponding to the possible vanishing eigenvalues.

They were used in this appendix to complete the columns of the unitary real

matrix ψ̄. From the outcome of the previous subsection any eigenvector ϕj
k of

λiH can be obtained by applying the diagonal matrix U2 to a real eigenvector

ϕ̄
j
k of λR, namely ϕj

k = ϕ̄
j
k exp

(︁
−iπ

2
(k − 1)

)︁
, implying that even k−components

are purely imaginary and odd k−components are purely real. Then it is im-

mediate to realize that if ϕ̄j
k corresponds to a singular eigenvector of λR also

Re(ϕj
k) and Im(ϕj

k) ( and therefore also Re(ϕj
k)+ Im(ϕj

k)) correspond to singu-

lar eigenvectors or at most null vectors (not both) of λiH because this matrix

is purely imaginary and the complex conjugation of a singular eigenvector is

again a singular eigenvector by Eq. (2.57) and Eq. (2.58) with aj = 0.

Then it follows that all the orthogonal eigenvectors ϕ̄j (output of dstevx)

corresponding to the zero eigenvalues of the matrix λR can be used to define

the corresponding real singular eigenvectors corresponding to the matrix λiH ,
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i.e.:

ϕ̃
j

k = Re(ϕj
k) + Im(ϕj

k) =

{︄
(−1)(k−1)/2ϕ̄

j
k k odd

(−1)k/2ϕ̄
j
k k even

(2.68)

that are explicitly real, and orthogonal each other because
∑︁

k ϕ̃
j

kϕ̃
l

k =
∑︁

k ϕ̄
j
kϕ̄

l
k =

δl,j. They are also orthogonal to all the other pairs of non-singular eigenvectors

because of the orthogonality property of eigenvectors of a Hermitian matrix

λiH , that we have already used in the previous section.

2.3 Jastrow Factor

Within QMC, it is easy to improve the quality of the WF by multiplying

the WF with an exponential JF. This last one enriches the description of

the ground state (GS) by encoding explicitly the electronic correlation, while

speeding up the convergence to the complete basis set limit[11]. Indeed,

with an appropriate choice, the JF can satisfy exactly the electron-electron

and electron-ion cusp conditions of the many-body WF, consequences of the

Coulomb 1/r singularity at short distance. In Ref. [28] we introduced a new

kind of JF that contains a richer dependence on the spin and that plays a

fundamental role when used in combination with the Pf WF.

The JF is defined as

J(X) = eUei+Uee , (2.69)

where Uei is a single body term that deals explicitly with the electron-ion inter-

action and Uee is a many-body term that properly accounts for the electronic

correlation. The single body term is

Uei =
N∑︂

i=1

uei(ri), (2.70)

with uei being

uei(ri) =

#ions∑︂

I=1

−ZI
1− exp(beI |ri −RI |)

beI
+ gI(ri). (2.71)
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In Eq. (2.71) ZI is the atomic number of the atom I and bei is a variational pa-

rameter defined for each atomic species, while gI(ri) encodes the most general

non-homogeneous electron-ion one-body term, i.e. depending explicitly on all

nuclear and electron coordinates and not only on their relative distances, that

is defined as

gI(ri) =
∑︂

ν

ξI,νϕI,ν(ri), (2.72)

where the summation is extended over all the gaussian orbitals in the JF basis

set centered on the I-th atom. The electron-electron term instead is written

as

Uee =
∑︂

i<j

uee(riσi, rjσj), (2.73)

where the sum is extended over the pairs of different electrons and where

uee(riσi, rjσj) = kσi,σj

|ri − rj|
1 + beeσi,σj

|ri − rj|
+ gee(riσi, rjσj), (2.74)

with the 2 × 2 matrix beeσ,σ′ described by one beeσ,σ′ = bee or two variational

parameters for σi = σj when kσi,σj
= 1/4 and beeσ,σ′ = bee∥ and for σi ̸= σj

when kσi,σj
= 1/2 and beeσ,σ′ = bee⊥ . The conventional expression for the JF can

be obtained by removing all spin dependency in the previous expressions and

remaining only with the variational parameters corresponding to the opposite

spin case kσi,σj
= 1/2 and beeσ,σ′ = bee.

In our expression the first term in Eq. (2.74), named two-body Jastrow,

deals explicitly with the electron-electron cusp conditions, the second term in

Eq. (2.74) instead is a bosonic pairing function in the form

gee(r1σ1, r2σ2) =
∑︂

k,l

ζσ1σ2
k,l ϕkσ1(r1)ϕlσ2(r2), (2.75)

with the elements of the matrix ζ defining further variational parameters.

Notice that both gI and gee do not affect the cusp conditions because they

are expanded over cuspless gaussian orbitals. The gee term has the same

form of Eq. (2.14), but, since the fermionic behavior is already encoded in
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Figure 2.4: Restoring the singlet state for the Jastrow correlated broken sym-
metry ansatz. The JF cannot change the broken symmetry ansatz if it is
oriented in the same quantization axis (z-axis) of the electron basis. If we ro-
tate the spins of the broken symmetry ansatz by 90 degrees around the y-axis,
the state becomes a quite general linear combination of spin configurations
in the original basis. By carefully tuning the weights of each configuration
with an appropriate spin-dependent Jastrow factor, we can recover the exact
expansion of the singlet state in this basis.

the fermionic part of the WF, this term is symmetric under particle exchange.

The use of a pairing function in the JF enriches the description of the charge

and spin correlations of the system, by noticeably improving the quality of

the global WF. It is a common practice to adopt a simplified or even absent

spin dependency in the function u of Eq. (2.74). This is often accurate for

systems where the magnetic properties are not relevant. We will refer to it in

the following with the prefix Js in the WF, in order to distinguish it from the

prefix J used for the full spin dependent JF.

A perfect singlet remains such after the multiplication of a spin indepen-

dent JF, and so our spin dependent JF is not appropriate if we do not want to

break the spin symmetry. It is, instead, necessary if we want to recover, at least
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approximately, the singlet from a spin contaminated broken symmetry uncor-

related fermionic ansatz. A general spin dependent u, as defined in Eq. (2.74),

is therefore of fundamental importance for the AGPu or the Pf ansatze. Let

me start with a simple example. We consider two atoms with opposite spins

and break the spin symmetry by orienting the spins of the atoms along the

z−quantization axis. In this case the JF is not able to change the classical

antiferromagnetic spin state because it acts as an irrelevant constant when ap-

plied to it. It is instead more physical to orient the spin moment of the atoms

in a direction perpendicular to the quantization axis chosen for the JF. In this

way the JF can act on the electrons and the spins while the magnetic moment

is free to fluctuate and recover its genuine quantum character. As previously

mentioned with the Pf it is possible to rotate the spin of the WF in every

direction and orient the magnetic moment in any direction of the space. This

works particularly well in combination with our Jastrow that can suppress the

unfavored triplet configurations with parallel spins generated by the rotation

as shown in Fig. 2.4. This optimal spin-orientation of the atoms, i.e. per-

pendicular to the JF one, is rigorously valid within the well known spin-wave

theory of a quantum antiferromagnet[30]. In this case the JF defined with

a spin-quantization axis perpendicular to the magnetic moment of the atoms

allows the description of the quantum fluctuations and the corresponding zero

point energy, even for a finite (as is our case) number of atoms[30].

2.3.1 The S2 operator

The standard QMC algorithms rely on the possibility to sample the real space

configurations of a general electronic system. All the observables can be indeed

calculated in the basis where the electron positions and their spins are defined.

In particular, for the systems considered, it is interesting to estimate the spin

observables in order to understand their magnetic properties and the quality

of the corresponding WFs. Though the total Sz is fixed during the simulation,
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the value of the S2 depends on the coupling between the JF and the Pf or the

AGPu that is particularly important when the spin symmetry is broken. The

efficient computation of the expectation value of the S2 operator has already

been described in [65] for the JsAGPu and therefore we will derive in the

following an analogous expression valid for the JPf.

In particular, I will show how to evaluate S2 in a region of the space with

a fast and computationally cheap approach based on the fast-update algebra

of the Pf and the spin dependent JF.

Let us consider the expectation value of the S2 operator over a generic

WF Ψ by direct application of its definition. In the following we use the

completeness of the spatial configurations:
∑︂

x

|x⟩⟨x| = I (2.76)

where the summation symbol implies here also a 3N−multidimensional inte-

gral over the electron coordinates. Assuming a fixed polarization Sz we can

write the explicit expression of the total spin square as

⟨S2⟩Ψ =
⟨ψ|(Sz)2|ψ⟩

⟨ψ|ψ⟩ +
1

2

∑︂

x

N∑︂

i,j

⟨ψ|(S+
i S

−
j + S−

i S
+
j )|x⟩⟨x|ψ⟩

⟨ψ|ψ⟩

=

N↑∑︂

i=1

N∑︂

j=N↑+1

∑︂

x

⟨ψ|x⟩⟨x|S+
i S

−
j |ψ⟩

⟨ψ|ψ⟩

+
1

4
(N↑ −N↓)

2 +
1

2
(N↑ +N↓)

=

N↑∑︂

i=1

N∑︂

j=N↑+1

∑︂

x

p(x)
⟨x|S+

i S
−
j |ψ⟩

⟨x|ψ⟩

+
1

4
(N↑ −N↓)

2 +
1

2
N, (2.77)

where the operator S⃗i in the above equation acts on the spin component cor-

responding to the electron position ri of the configuration x. In the above

expression

p(x) =
|⟨ψ|x⟩|2∑︁
x |⟨ψ|x⟩|2

, (2.78)
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therefore, by using QMC sampling, we generate configurations according to

the probability density p(x). Thus we can evaluate the above multidimen-

sional integral by directly sampling the estimator S2(x) that multiplies p(x)

in Eq. (2.77), namely

S2(x) =

N↑∑︂

i=1

N∑︂

j=N↑+1

⟨x|S+
i S

−
j |ψ⟩

⟨x|ψ⟩

+
1

4
(N↑ −N↓)

2 +
1

2
N. (2.79)

The content of the former equation can be evaluated efficiently as I will

explain in the following. Indeed, the application of the operator S+
i S

−
j to the

configuration x generates only a single configuration xij = {(r1 ↑), · · · (ri ↓
), · · · , (rj ↑), · · · (rN ↓)}. Considering x our sampled configuration and using

the previously given definition of xij, we can recast Eq. (2.79) as

S2(x) =
1

4
(N↑ −N↓)

2 +
1

2
N +

N↑∑︂

i=1

N∑︂

j=N↑+1

⟨xij|ψ⟩
⟨x|ψ⟩ . (2.80)

The only hard challenge of Eq. (2.80) is the calculation of the N↑ ×N↓ ratios

rij =
⟨xij|ψ⟩
⟨x|ψ⟩ (2.81)

for i = 1, 2, · · · , N↑ and j = N↑ + 1, N↑ + 2, · · · , N , that in our case reads

rij =
J(xij)ΨPf (xij)

J(x)ΨPf (x)
= rPf

ij r
JF
ij . (2.82)

The configurations x and xij differ for a spin flip of the electrons i and j, but

we can also consider xij as the configuration in which the electron i evolved to

the position previously occupied by j and vice versa. We can then calculate

the ratios in Eq. (2.82) using a fast algebra to update two positions for the Pf

based on the Sherman-Morrison algebra and some simple manipulations and

for the JF with a direct evaluation, as discussed in detail later on.
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It is also possible to calculate the value S2(Λ) of the S2 operator in a sub-

region of the space Λ. For this quantity, we can obtain an expression similar

to Eq. (2.80):

S2
Λ(x) =

1

4
(NΛ

↑ −NΛ
↓ )

2 +
1

2
NΛ +

∑︂

i={Λ,↑}

∑︂

j={Λ,↓}

⟨xij|ψ⟩
⟨x|ψ⟩ , (2.83)

where NΛ
σ (σ =↑, ↓) is the number of σ-electrons in the region Λ, NΛ = NΛ

↑ +

NΛ
↓ . The summation symbol over i ∈ {Λ, σ} indicates the sum for all σ-electron

whose coordinate is in the region Λ. Therefore also this quantity can be easily

evaluated in terms of the ratios rij of Eq. (2.82), that will be derived in the

following subsections.

The Pfaffian contribution

In order to calculate the Pf contribution to rij we used a slim and fast algebra

by making extensive use of the Pfaffian properties[66] with a computational

cost O(N3), mostly BLAS3 operations. This was extremely important because

otherwise this computation could easily become the bottleneck of the whole

procedure. In this way we could ensure the evaluation cost of S2 to be com-

parable with the one of a typical QMC cycle over all the N electrons that

is at most O(N3). Before describing the fast-updating rules for the position

of two electrons with a single move, we need to introduce some quantities

fundamental for the calculation.

Let us denote as W−1 the inverse of W . This inverse W−1 can be com-

puted from scratch for each configuration used to sample the spin square. The

electron coordinates ri are given for i = 1, · · ·N , but since the corresponding

spin can change with respect to the original choice (↑ for i ≤ N↑, and ↓ for

i > N↑) due to the spin flips mentioned in the previous subsection, we will

consider explicitly the values of the spin here.

We then define the matrix θ as

θij = g(ri ↑, rj ↓) + g(ri ↓, rj ↑)− g(ri ↑, rj ↑)− g(ri ↓, rj ↓). (2.84)
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For each spin ↑ electron labeled by k ≤ N↑ we can define the column vectors

v↑k =

⎛
⎜⎜⎜⎝

g(r1 ↑, rk ↑)− g(r1 ↑, rk ↓)
g(r2 ↑, rk ↑)− g(r2 ↑, rk ↓)

...
g(rN ↓, rk ↑)− g(rN ↓, rk ↓)

⎞
⎟⎟⎟⎠ , (2.85)

while for the spin ↓ we have instead k ≥ N↑ and

v↓k =

⎛
⎜⎜⎜⎝

g(r1 ↑, rk ↓)− g(r1 ↑, rk ↑)
g(r2 ↑, rk ↓)− g(r2 ↑, rk ↑)

...
g(rN ↓, rk ↓)− g(rN ↓, rk ↑)

⎞
⎟⎟⎟⎠ . (2.86)

We can use these vectors to build the N ×N matrix

V =
(︂
v↑1v

↑
2 · · · v↑N↑

v↓N↑+1 · · · v↓N
)︂
=

(︁
V ↑V ↓)︁ , (2.87)

that allows us to define

U =
(︁
U↑U↓)︁ = W−1V =

(︁
W−1V ↑W−1V ↓)︁ , (2.88)

and finally

D = (V ↑)TU↓. (2.89)

Now we have all the ingredients that we need for our fast-updating algebra,

and upon application of Sherman-Morrison algebra, we arrive at the ratio

rPf
ij = Pf[W (Xij)]/Pf[W (X)]

= (1 + Uii)(1 + Ujj)− UijUji − (θij +Dij)W
−1
ij . (2.90)

We can notice that the preliminary calculation of the auxiliary matrices θ,

V , U , and D, including the inversion of W , amounts to a total of O(N3)

operations, while the calculation of the ratios is O(N2) once the matrices have

been computed.
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The JF contribution

In the JF that we introduced in the previous section only the electron-electron

term of Eq. (2.73) has a spin dependence and thus only this part gives a

contribution to the ratio. By simple substitution it is easy to prove that

rJFij = exp (Di −Dj + uee(ri ↑, rj ↓) + uee(ri ↓, rj ↑)

− uee(ri ↑, rj ↑)− uee(ri ↓, rj ↓)) , (2.91)

where we have defined

Dk =
∑︂

l

uee(rlσl, rk ↓)− uee(rlσl, rk ↑). (2.92)

The whole operation has a O(N2) computational cost and so does not limit

the calculation in terms of performances.
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Chapter 3

Hydrogen Chain

In this chapter I will discuss the ground state properties of the hydrogen chain,

a project successfully completed within the "Many Electron Collaboration" of

the Simons Foundation. I will report the results of a combined application

of cutting-edge computational methods to determine the properties of the hy-

drogen chain in its quantum-mechanical ground state, outlining the results

contained in Ref.[12].

A linear chain of hydrogen atoms (N protons equispaced along a line, with

N electrons) [67, 68, 69, 70, 11] embodies many central themes of modern

condensed matter physics while retaining a certain degree of computational

tractability. It features a periodic atomic potential, incorporates realistic

Coulomb interactions, requires the construction of accurate and compact basis

sets, and yet maintains a connection with the fundamental Hubbard model

which has been a hallmark of the theory of interacting fermions. Varying the

separation between the nuclei mimics applying pressure to a crystal, which

we found leads to a rich phase diagram, including an antiferromagnetic Mott

phase, electron density dimerization with power-law correlations, an insulator-

to-metal transition and an intricate set of intertwined magnetic orders. There

have also been several previous studies of this system [67, 68, 69, 70]. How-

ever, they were restricted either to small basis sets or finite system sizes, which

prevented a realistic description of the H chain, or by their accuracy and capa-
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bilities, which prevented reliable resolution of the delicate scales and discovery

of all the phases. The synergistic application of complementary methods dis-

tinguishes the work presented here and allowed us to make robust predictions

with a multi-messenger approach in this challenging problem. We accessed

the ground-state properties using multiple first-principles many-body meth-

ods, including standard and sliced-basis density-matrix renormalization group

(DMRG, sb-DMRG) [71, 72, 73, 74], auxiliary-field (AFQMC) [75], and VMC

and DMC (our main contributions). For reference, independent-electron calcu-

lations have also been performed, including restricted (RHF) and unrestricted

(UHF) Hartree-Fock [76] and DFT [77]. While it is not practically possible

with any single method to simultaneously converge all aspects of the electronic

structure calculations (such as basis set limit, many-electron correlation, and

thermodynamic limit) across different regimes of the GS phase diagram, we

draw our conclusions based on the convergence of multiple approaches to a

consistent physical picture. For what concerns the VMC and DMC, in this

study we used JsSD WF ansatz, averaging over twisted boundary condition,

as described in section 2.1. The descriptions of the other methods adopted can

be found in the supplemental information (SI) of Ref. [12].

In the following sections I will describe the different phases of the ground

state as a function of the lattice spacing.

3.1 Insulating phase

3.1.1 Antiferromagnetism.

At large proton-proton separation to a first approximation the system is a

collection of isolated H atoms, each with a single electron in the atomic 1s

orbital. This is very similar to the half-filled Hubbard model in the large

coupling (U/t) limit. However the weakly bound nature of H− and its very

diffuse orbitals can create excitons with strong binding in the H chain.
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Figure 3.1: Insulating phase, antiferromagnetism. Main: correlation function
Ci at R = 3.6, 2.8, and 2.0 aB (red circles, blue crosses, and orange triangles)
computed with DMRG for a chain of N = 50 with OBC. The oscillations, with
wavelength λ = 2R, show AFM correlations. Inset: oscillation amplitudes
C2i+1−C2i versus i (log-log scale). Lines show the results of a linear fit. From
Ref. [12].

At large R, the correlations in the H chain can be characterized in terms

of a spin-1
2

Heisenberg chain. The Heisenberg chain is a critical system, with

power-law decay of antiferromagnetic (AFM) spin-spin correlations, ⟨Ŝ0 · Ŝi⟩.
In response to a local perturbation (such as a local magnetic field), one ob-

serves local ordering (such as local Néel order) which decays as a power law

in the distance from the perturbation. To probe AFM correlations in the H

chain, in Fig. 3.1, the quantity Ci = ⟨n̂0↑n̂i↓⟩ − ⟨n̂0↑⟩⟨n̂i↓⟩ has been computed

with DMRG in the minimal (STO-6G) basis, where n̂iσ denotes the number

of electrons occupying the (orthogonalized) atomic orbital i with spin polar-

ization σ along z. Ci oscillates with wavelength λ = 2R, corresponding to the

Néel vector of two sublattice antiferromagnetism; the wavevector may also be

thought of as twice the Fermi wave-vector q = 2π
λ

= 2 k0F of a paramagnetic

1D ideal Fermi gas of density ρ = 1
R
. In Fig. 3.1, it is possible to observe that
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the oscillations in Ci decay with a power-law envelope, Ci = C0i
−η (−1)i. The

decrease of C0 with R (see inset) indicates the weakening of AFM as the chain

is compressed. The power-law decay of the AFM correlation is consistent with

quasi long-range order in 1D. The fitted exponent of η ≃ 1.11(1), likely affected

by finite-size effects, is slightly higher than the prediction from conformal field

theory, which gives ⟨Si · S0⟩ ∝ (−1)i
√
ln i/iη, with η = 1 for systems within

the same universality class as the 1D Heisenberg chain [78, 79].

3.1.2 Dimerization

As R is reduced in the large R regime, a charge dimerization is observed. With

PBC, dimerization can be probed by density-density correlations. With OBC,

or with a local perturbation, density dimerization can be measured by the

electronic density, for example integrated along transverse slabs (i.e., over x

and y for a finite δz), n(z). The upper portion of Fig. 3.2a shows n(z) versus z,

for a segment at the center of the chain under OBC, computed with AFQMC.

The density has maxima at the proton sites and minima halfway between. The

dimerization measure for an N -atom chain, ∆N , is defined by the difference

between the two adjacent local minima of n(z) in the center of the chain as

illustrated in the lower portion of Fig. 3.2a. When dimerization is present, we

find that its amplitude increases as R is decreased.

In Fig. 3.2b the dimerization in the H chain at R = 2.0 aB has been in-

vestigated using AFQMC, sb-DMRG, DMC, and VMC. We found that, in the

middle of the chain, dimerization decays with chain length as ∆N ∝ N−d,

with exponents d = 0.57(3), 0.563(4), 0.58(11) and 0.90(26) from AFQMC,

sb-DMRG, DMC and VMC, respectively. The subtle power-law physics of 1D

correlated systems is not easy to capture accurately with numerical methods.

It is encouraging that a quantitative agreement is seen between our very dif-

ferent many-body methods. HF is qualitatively incorrect here, giving either

no order or true long-range order; DFT results are similar.
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Figure 3.2: Insulating phase, density dimerization. (a) Top: electronic density
n(z) for R = 2.0 aB, with OBC. Bottom: definition of the dimerization measure
∆N for a system under OBC. The gray vertical lines indicate how n(z) is
integrated along thin (width δz = 0.1 aB) slabs perpendicular to the chain. (b)
Dependence of dimerization measure ∆N on the number of atoms in the open
chain, N , from AFQMC, sb-DMRG, VMC, and DMC. ∆N decays as a power-
law, ∆N ∝ N−d with exponent d ≃ 0.5 from correlated methods. Results from
HF are also shown for reference. From Ref. [12].
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Figure 3.3: Metal-insulator transition. (a) Complex polarization measure as
a function of R from multiple methods, identifying a MIT separating a region
at smaller R with |Z| = 0 from |Z| > 0 at larger R. (b) Magnetic phases from
DFT-PBE, as indicated by Mtot =

∫︁
m(r)d3r/N and Mabs =

∫︁
|m(r)|d3r/N ,

where m(r) is the magnetization of the simulation cell. From Ref. [12].
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3.2 Metallic phase

3.2.1 Insulator-to-metal transition

Correlated electron materials often exhibit metal-insulator transitions as pa-

rameters such as temperature, pressure or crystal structure are varied [80, 81].

From the perspective of the 1D one-band Hubbard model which, as we have

seen, captures the universal aspects of the physics at large R — and more gen-

erally from the perspective of one-band models with second-order Umklapp

processes, no MIT should occur here[82]. With multiple methods and multiple

probes, we have shown conclusive evidence that a MIT occurs in the H chain,

and provided a characterization of the physical origin and properties of the

transition.

The concept of macroscopic localization [83, 84, 70] provides a direct wavefunction-

based characterization of system properties. For periodic systems, one defines

the complex polarization ZN = ⟨ΨN |ei
2π
L

∑︁
i ẑi |ΨN⟩, where |ΨN⟩ is the ground

state of the N electrons in a supercell of size L = NR along the chain direction.

The electron localization length Λ =
√
D

2πρ
is related to the complex polarization

by D = − limN→∞N log |ZN |2. In localized systems, limN→∞ |ZN |2 = 1, and

Λ is finite; in metallic systems limN→∞ |ZN |2 = 0, and Λ → ∞.

In Fig. 3.3a, we established the MIT by computing ZN with AFQMC,

DMC and VMC. For small R, all methods give ZN equal to or statistically

compatible with 0 across a wide range of system sizes N , indicating a metal-

lic many-body ground state. For large R, all methods yield a non-zero ZN .

The many-body methods point to a transition point located approximately at

RMIT ∼ 1.70(5) aB. While there is some uncertainty in the critical value, be-

cause of computational limitations, it is remarkable that two methods working

with completely different basis sets and projection algorithms yield results in

excellent quantitative agreement.

In particular the values of |ZN | in the insulating phase, which fall further
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Figure 3.4: Spin-density computed from DFT-PBE, shown along a plane
containing the chain, illustrating long-wavelength ferromagnetic domains at
R = 0.9 aB. From Ref. [12].

from unity at smaller R, are sensitive to finite-size effects. At large N , we

expect |ZN | = 1− g̃(ξ/L) in the insulating phase, where g̃ is a scaling function

and ξ the MIT correlation length. The smooth decrease of |Z| as RMIT is

approached suggests a second-order transition (related to gap closure).

Before exploring the origin of the MIT, we briefly discuss magnetic corre-

lations in the metallic phase. The evolution of the magnetic moments within

DFT is shown in Fig. 3.3b, and the spin density at R = 0.9 aB is plotted in

Fig. 3.4 as a point of reference. To account for spin correlations, the DFT so-

lution breaks translational symmetry to create antiferromagnetic domains of

varying periods, often associated with very diffuse orbitals as seen in Fig. 3.4.

Of course, DFT observations are independent-electron in nature. In the many-

body solution, in particular, translational symmetry is restored, and two-body

correlation functions are needed to probe magnetic correlations.

3.2.2 Origin of the MIT and properties of the metallic
phase

It is theoretically established that the ground state of a one-band model with

commensurate filling is insulating. Our calculations revealed that the MIT
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Figure 3.5: Mechanism of the insulator-to-metal transition. (a) Schematic
illustration of the self-doping mechanism inducing a MIT in the H chain. Black
line: large R, no band overlap. Green lines: small R, multiple bands crossing
ϵF . (b) Structure factor of the spin-spin correlation function at R = 0.9 aB
and at R = 2.5 aB, computed from AFQMC, DMC and DMRG. Wave-vectors
q are along the chain. Vertical lines, as an aid to the eye, mark the kinks in
S(q) associated with the Fermi surfaces. From Ref. [12].

arises from a self-doping mechanism in which the one-band picture breaks

down. The basic idea is illustrated in Fig. 3.5a, using a band-theory based

cartoon of the electronic structure. The isolated H atom has multiple states,

including the occupied 1s and excited states 2s, 2p, etc. At large R the band-
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widths are small compared to the energy gaps, and a one-band approximation

is reasonable. As R is decreased, the bands broaden, band overlap occurs,

and metallic behavior results. Quantitative calculations involve a correlation

problem that requires treating interactions in a multi-band situation, effects

that are entirely absent in the standard Hubbard model.

We computed the spin structure factor, defined as S(q) = 1
N
⟨Ψ|ρ̂†qρ̂q|Ψ⟩,

where ρ̂q =
∑︁

i Ŝz,ie
iq·r̂i is the Fourier transform of the spin density at q =

(0, 0, q), with Ŝz,i and r̂i = (x̂i, ŷi, ẑi) denoting the spin-z and position opera-

tors of the electron i, respectively. The result is shown in Fig. 3.5b. At R = 2.5

only one peak is seen at q = 2k0F , signaling power-law AFM order as discussed

earlier. To probe the nature of the metallic phase, we focus on a representative

case of R = 0.9 aB, away from the vicinity of the MIT transition. S(q) is shown

from two different QMC calculations, in supercells of N = 48 atoms averaging

over 11 twist angles. In addition, DMRG calculations in a supercell of N = 24

atoms are also reported. In a metallic system we expect peaks at q = 2kF ,

where kF is one of the Fermi wavevectors of the system. Two cusps are seen

in each result at locations, q1 and q2, in precise agreement among the different

calculations. We interpreted the larger wavevector as arising from the 2kF

process in the 1s-dominated lower band. The position q2 = 2 (1 − x) k0F then

gives the doping x of this band. In a simple two-band picture, the lower wave

vector is given by q1 = 2x k0F/g, where g gives the degeneracy of the “upper

band” which is occupied. At R = 0.9 aB, the locations of q1 and q2 satisfy

g q1 + q2 = π/R in all the results, with g = 2. This is consistent with a doubly

degenerate upper band (e.g. 2px,y).
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Chapter 4

The H4 model system

Even relatively simple systems can hide pitfalls that can be very difficult to

solve. The case of the (H2)2, a system of two diatomic molecules of hydrogen

at equilibrium distance, first introduced in the literature by Anderson [85],

is emblematic from this point of view: as recently shown by Gasperich et al.

[14], a single SD can only give a very poor description of this system when it

approaches the square geometry. This is due to the HOMO-LUMO degeneracy

in the square limit that a single SD is not able to reproduce. Remarkably in

Ref. [13] we show that the JsAGP allows a perfect description of this highly

entangled ground state.

The simplicity of this model system allows us to study the role of the op-

timization in determining an accurate nodal surface, because, by repeating

several times the optimization, we can be safely confident that the absolute

minimum energy WF is obtained. On the other hand we can also verify that

our stochastic optimization[5] works also when we remove the Jastrow from

our ansatz, providing the lowest energy AGP, clearly with much larger compu-

tational effort compared to deterministic methods, that are not easily available

for the AGP. We are able to show that the use of a pure AGP determinant

(without any JF) can give rise not only to a poor description of the electronic

correlation but also to a qualitatively wrong picture of the chemical bond.

Remarkably, the DMC energies obtained with the JsAGP trial WF in
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Figure 4.1: Stylized picture of the system. While ry is kept constant for all
the calculations at a distance equal to 2.4 a.u., the distance rx is varied for
different system shapes. From Ref.[13].

ccpVDZ basis are better than the ones obtained with the complete active

space (CAS) (2,2) and CAS(4,4) and also with the full configuration interac-

tion (FCI) all calculated with a quadruple zeta basis [14].

The geometry of the system studied has a fixed bond distance along the y

direction ry = 2.4 a.u.. This value gives the lowest energy result for the square

geometry [86]. As sketched in Fig. (4.1), we study the system as a function of

the distance rx between the two vertical molecules, comparing the dispersion

curves obtained with the JsAGP and the JsSD and analyzing the effect of the

JF.

For the optimization of the JsAGP and JsSD WFs we used the same proce-

dure. We consider two types of initializations that we denote in the following

by OPT rx > ry or OPTrx < ry, to indicate that the tetragonal symmetry

is broken. In the first (second) case we take rx = 4a.u. (rx = 1.8a.u.) and

perform a DFT calculation for the initial SD. We initially optimize only the
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JF and we proceed with the full optimization of the AGP or SD with the JF.

Then we move the atoms to a new position close to the original one maintain-

ing the values of the variational parameters. If the new solution is reasonably

close to the previous one, the stochastic optimization drives the WF to its

new minimum. We iterated this procedure to obtain the WFs at all the rx

distances for the JsAGP and JsSD. As we will discuss more extensively later,

the JsAGP optimization does not depend much on the starting WF, that is

instead crucial for the JsSD. In this latter case the optimization procedure de-

termines completely different results depending on the initial geometry when

we get close to the symmetric square case.

To optimize the AGP without the JF we followed two different procedures

yielding the same results. In one case we started for every geometry from the

corresponding optimized JsAGP WF: we set the JF to 1 and we optimized the

AGP from there. In the second case we used the same procedure adopted for

the JsAGP and JsSD cases and obtained consistent energy values, validating

the optimization procedure even in this difficult case without the JF.

4.1 Wave functions comparison: the failure of
the Slater Determinant

The variational energies for the considered WFs are visible in Fig. (4.2)a and

reported in table (4.1). As shown in Fig. (4.2)a, the JsSD values are reasonably

accurate when the system is far from the square geometry, but very poor when

rx ≈ ry. We notice that for the JsSD the starting point is fundamental and

the optimization result can significantly differ depending on the two different

initializations. A particularly evident effect is the crossing of the JsSD energy

dispersions in Fig. (4.2)a.

As expected this problem does not affect the JsAGP WF that shows the

correct profile because, close to the square geometry, it contains implicitly the
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Table 4.1: Variational energies for different optimized WFs. The basis set
used for the JsAGP and JsSD is indicated between round parenthesis. We
show one point for each case: rx = ry, rx < ry and rx > ry. All the energies
are expressed in Hartree.

rx JsSD(ccpVDZ) JsAGP(ccpVDZ) JsAGP(ccpVTZ)

1.80 −2.1909± 0.0003 −2.1957± 0.0004 −2.1953± 0.0003

2.40 −2.0694± 0.0004 −2.1075± 0.0004 −2.1084± 0.0003

3.00 −2.1435± 0.0003 −2.1491± 0.0003 −2.1504± 0.0003

two important SDs with strong bonds either in the x or in the y direction.

The optimizations of the JsAGP both from OPTrx > ry and OPTrx < ry lead

exactly to the same result. The qualitative difference between the two ansatze

is clearly shown in Fig. 4.3. The MOs try to localize the charge between two

pairs of atoms to form two H2 molecules. In particular the JsSD binds the

atoms that are at smaller distances in the initial geometry: if we consider the

OPTrx > ry case we obtain a higher charge density along the y direction, while

if we start from the OPTrx < ry case a higher charge along the x direction

shows up. The JsAGP, instead, can resonate between these two configurations

and catch the resonance valence bond (RVB)[87] behavior expected for the

ground state of the square geometry.

The JsAGP result is not only good at the variational level, but it provides

also particularly accurate nodal surfaces for the DMC calculations. Indeed, as

we can notice from Fig. (4.2b) and from table (4.2), the DMC energies calcu-

lated using the nodes of the JsAGP (cc-pVDZ) are lower than the ones calcu-

lated with the multi-determinant WF CAS(4,4), and FCI with the quadruple

zeta basis [14]. This shows that, even with a small basis set, the JsAGP leads,

in this controlled case, to almost optimal nodes and, by consequence, very ac-

curate DMC energies. This is indeed remarkable, considering also that other

more standard methods suffer not only for poor accuracy but also for the too
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Figure 4.2: Energy comparisons between different methods. (a) VMC energies
with different ansatze: in orange the energies of the JsSD starting from the
calculation at large rx, in red the ones starting from the small rx, while in green
the JsAGP variational energies are reported. (b) Comparison between the
DMC energies calculated using the nodes of the JsAGP (ccpVDZ) and the FCI
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are not visible. From Ref.[13].
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Figure 4.3: Charge density on the xy plane of the systems with square geom-
etry.. In panel (a) the density obtained with the JsAGP WF, in the panel (b)
the density of the JsSD optimized from rx > ry, while in the panel (c) the one
of the JsSD from rx < ry. From Ref.[13].
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Table 4.2: Difference between the energies calculated with the DMC performed
using the nodes of the JsAGP, the ones of the CAS(4,4) and the FCI [14]. All
the energies are expressed in Hartree.

rx JsAGP CAS(4,4) FCI

2.188 −2.1307± 0.0001 −2.13033± 0.00010 −2.1297

2.400 −2.1125± 0.0002 −2.11193± 0.00005 −2.1114

2.646 −2.1257± 0.0001 −2.12558± 0.00003 −2.1248

large extension of the basis set. It is also worth noticing that we obtain a

higher gain in the region rx ≈ ry where the RVB picture is more relevant.

4.2 The role of the Jastrow Factor

Thanks to the simplicity of the H4 molecule, and the limited number of the

WFs variational parameters, we used this model to study the genuine AGP

without any JF. This case is particularly difficult with our stochastic opti-

mization method because the statistical fluctuations of the energy are much

larger compared to the JsAGP case. In principle the AGP should be able to

describe the static correlation of this molecule also without JF, with the two

main contributions in the WF as in Fig. 4.3a. At the variational level a much

worse energy for the AGP WF is expected because the correlation described

by the JF is very important. However, it is very interesting to observe that

the DMC results are significantly different with (JsAGP) or without (AGP)

JF, even considering that the JF> 0 cannot change the signs of the WF, and

only the optimization of the AGP in presence of the JF leads to a very ac-

curate nodal surface. In Fig. 4.4a we can see that the variational energies of

the AGP WF are indeed considerably higher compared to the JsAGP ones.

The smoothness of the curve and the reproducibility of the results indicate

that the optimization is not stuck in spurious local minima. Instead the DMC
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Figure 4.4: AGP and JsAGP energies. In panel (a) we compare the values
at the VMC level, while in panel (b) the corresponding DMC energies, within
fixed node approximation, are shown. From Ref.[13].

results shown in Fig. 4.4b indicate an unphysical jump of the energy between

two different phases. When rx ≥ ry the AGP is able to give very good energies

that differ only a few mH from the JsAGP ones. Instead, when rx < ry we

can see a clear jump in the energy indicating that the nodal surface of the
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WF is not correctly described by the AGP. However, also in this regime the

nodes are still better than the ones provided by the JsSD WF, with energy

values between the ones of the JsSD and the JsAGP. In order to check that

this transition was not due to some optimization error we have calculated the

WFs for rx < ry starting from the one previously obtained for rx = ry, yielding

exactly the same VMC and DMC results. Qualitatively speaking, when the

AGP is optimized in presence of the JF, it can resonate between the correct

configurations by avoiding double occupancies of singlet electron pairs [87, 88],

that are energetically unfavorable. In some sense the Jastrow correlation drives

the optimization of the AGP toward the correct ground state energy and the

corresponding nodal surface.

Finally, as we can see from table (4.1), the JsAGP is almost converged

to the complete basis set limit with only the double zeta cc-pVDZ basis. The

differences in energy with the cc-pVTZ are much below one mH per atom. This

fast convergence is due to the term in the Eq. (2.70) that fulfills the electron-

ion cusp conditions and allows us to use a very small basis set to describe

the system. In the AGP the number of variational parameters scales with the

square of the number of elements of the basis. It is therefore very important

to reach a very accurate description with the smallest possible basis set. This

can have a very dramatic impact for large systems where the dimension of the

basis set is one of the most important bottlenecks of our JsAGP calculations.
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Chapter 5

Atoms, Dimers and Molecules

In this chapter I will discuss and compare the accuracy of the different ansatze

on the atoms and dimers of the first row of the periodic table (Lithium, Beryl-

lium, Boron, Carbon, Nitrogen, Oxygen and Fluorine) and on the benzene

molecule and dimers. The results in this chapter are based on the content

of Ref.[28, 33, 29, 34]. In every numerical technique designed to deal with

a reasonably large number of electrons (QMC included), the exact value of

the total energy cannot be reached in practice. However, one can hope that

the approximations that are involved do not have any impact on the chemical

properties of the system, as their effects are consistent for the atoms and the

molecules, yielding an error cancellation that allows the accurate description

of the chemical bonds.

In table 5.1 and Fig. 5.1 it is possible to observe the binding energies

calculated using the DMC with different guiding function ansatze. In particular

we compare our JsAGP and JPf to the JSD and the JFVCAS. There is a clear

general trend with the JPf improving upon the JsAGP and the JSD results,

showing an accuracy comparable with the multi-determinant JFVCAS WF.

Beryllium and Boron are two exceptions. For the Beryllium dimer it is possible

to guess that the JSD accuracy is due to a "lucky" error cancellation since the

JSD is even more accurate than the JFVCAS. For the Boron case we suspect a

similar scenario even if the large uncertainty on the exact value (see Tab. 5.1)
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Figure 5.1: Comparison between the different DMC binding energies obtained
with different WFs. The JFVCAS results are taken from literature[16].

does not allow a definite conclusion on the scale of the energy differences in

play. In any case it is remarkable that all the JPf calculations yield error

always below 0.2 eV .

In the following section we will examine in better detail three of these

dimers that have particular magnetic properties. In the carbon and nitrogen

dimers two atoms of spin 1 and 3/2 respectively combine into a singlet, while

two spin 1 oxygen atoms combine themselves into a dimer that has also spin 1.

We will see the importance of the spin fluctuations described by the JPf WF in

all these cases. Moreover, due to the magnetic interaction, the JsAGP and the

JsSD ansatz, that are constrained to orient the magnetic moments along the

same direction of the z quantization axis, are not size consistent. This means

that they do not recover the spin and the energy of two independent atoms

when the dimer is stretched and the atoms are at large distance. The JPf will

also provide some insight into the nature of the carbon dimer chemical bond. In

this dimer any type of mean-field approach, such as HF or DFT, is completely

off with errors of the order of the eV. Also highly correlated methods, such
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Table 5.2: Spin measures with different WFs for the Carbon atom and dimer
at VMC level.

S2 2µB

Atom Molecule Moment ∥ z
JsAGP 2.00 0.00 0.0005(4)

JAGPu 2.00534(3) 0.1743(5) 0.5833(4)

JsAGP 2.00418(5) 0.2880(4) 0.7194(4)

JAGP 2.00542(1) 0.0327(1) 0.0013(5)

Exact 2.00 0.00 -

as coupled cluster [93, 94, 95], face severe difficulties in describing its ground

state properties, so that highly involved multi-configuration expansions [95,

16, 96] are often adopted. Recently, Shaik et al. have proposed that a fourth

bond is necessary[97] to explain the C2 spectrum at low energy. This result

was rather surprising, especially considering that quadruple bonds should very

rarely occur [98, 99, 100, 101, 15].

In the last section of this chapter we will also discuss the case of the ben-

zene molecule, a system that represents the prototypical example of the RVB

theory and thus a fundamental test case for our approach. Finally, we will

discuss the benzene dimer in the two parallel displaced (PD) and T shape (T)

configurations.

5.1 Magnetic Dimers

5.1.1 Carbon

Carbon dimer is probably the most interesting example among these three

dimers. A full understanding of the behavior of the carbon-carbon interaction

is indeed still missing and the bond order of this molecule is still under debate,

with Shaik et al. that have recently proposed the existence of a quadruple bond
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Table 5.3: Carbon Energies. The JsAGP, JAGPu and JPf results are calcu-
lated with an optimized ccpVTZ basis set.

Carbon

Atom Molecule Binding

Source Energy[H] Energy[H] Energy[eV ]

JSD -37.81705(6)a -75.8088(5)a 4.75(1) a

JFVCAS -37.82607(5)a -75.8862(2)a 6.369(6)a

JsAGP -37.8243(1) -75.8611(2) 5.78(1)

JAGPu -37.8263(1) -75.8706(2) 5.93(1)

JPf -37.827965(3) -75.88650(4) 6.274(3)

JSD (DMC) -37.82966(4)a -75.8672(1)a 5.656(3)a

JFVCAS (DMC) -37.83620(1)a -75.9106(1)a 6.482(3)a

JsAGP (DMC) -37.8364(1) -75.8938(2) 6.01(1)

JAGPu (DMC) -37.8364(1) -75.8935(2) 6.00(1)

JPf (DMC) -37.8363(1) -75.9045(2) 6.31(1)

Estimated Exact -37.8450b -75.9265c 6.44(2)c,d
a Reference [16].
b Reference [102].
c Reference [92].
d A more recent estimate yields 6.39eV
(Cyrus Umrigar, private communication).

for this dimer[97]. Within a correlated RVB approach, they have found that

the 2σ and 3σ molecular orbitals, after s-p hybridization, change their nature

as compared to standard molecular orbital theory and show a corresponding

bonding character. By taking into account the remaining two π orbitals, ob-

viously bonding, they argued that an unexpected quadruple bond should be a

more appropriate description of the C2 molecule.

The carbon atoms have spin triplet electronic configurations, and their

mutual interaction leads to a singlet molecule. As we can see from Fig. 5.1

and table 5.3, the JPf not only improves the results of the JSD WF, but
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remarkably also the description given by the JsAGP and JAGPu. The huge

difference between the multi-determinant expansion JFVCAS and the JSD

binding energies helps to quantify the effect of the multi determinantal nature

of this molecule, and this makes even more surprising the quality of the results

obtained with a single JPf WF that, with a computational cost comparable to

a SD, is already very close to the exact value.

The explanation for the impressive improvement of the binding energy from

JsAGP and JAGPu to JPf resides on the description of the strong spin fluctu-

ations in this molecule. The JPf gives a very accurate picture of its magnetic

properties as we can see from table 5.2, giving results very close to S2 = 2

for the atom and S2 = 0 for the molecule. Conversely, by using the JsPf (the

Pf without spin dependent JF) and the JAGPu, we cannot recover the sin-

glet from the broken symmetry initialization. Interestingly, as expected, the

molecule does not have any magnetic moment on the z direction, because it is

an almost perfect singlet. The atomic spins, localized around each atom, point

in opposite directions in order to form the singlet molecular state. Since there

is no magnetic moment along z we can measure its magnetic moment only by

separately evaluating the S2 in the two semi-infinite regions, each one contain-

ing a single atom, separated by a plane perpendicular to the molecular axis

and at the same distance from the two atoms. In Fig. 5.3 we show that even

at bond distance there is a very strong magnetic moment around the atoms

and, in this way, we can explain the strong effect of the zero point energy of

the spin fluctuations described by the JPf. This confirms the picture that the

C2 molecule can be considered as the smallest antiferromagnet made of two

atoms with opposite spins.

It is particularly instructive to see the role of correlation in modifying the

molecular orbitals, by taking as a reference the ones corresponding to a simple

DFT double bond picture. The Pf part of the JPf WF, after full optimization

of the energy in presence of the JF, can be also recasted in terms of MOs
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Figure 5.2: Left panel: after breaking the spin symmetry, each spin-
independent orbital of an unrestricted SD ansatz splits into a pair of sin-
gle occupied ones with no definite spin projection. The histograms repre-
sent the corresponding spin component weights: the height of the blue (red)
rectangle indicates the percentage of the majority (minority) spin. Notice
that the occupation order is different in DFT calculations where the order is
1σg/1σu/2σg/2σu/2× (2πg) and where the orbitals have a single spin compo-
nent. Right panel: majority and minority spin orbitals with the most relevant
spin contamination. The orbitals (a) and (b) come from the 2πg and have the
same weight, the orbitals (c) and (d) are the last occupied ones (indicated as
2σu/3σg), in this case the (c) orbital has a 65% and the (d) one a 35% weight.
From Ref.[33].

as explained in section 2.2.7. The spin character of the resulting orbitals is

displayed in Fig. 5.2, where it is shown that i) at variance of the DFT mean-

field ansatz, the 3σg bonding orbital is eventually present as the minority

spin component of the highest occupied molecular orbital (HOMO), in partial

agreement with the quadruple bond picture. ii) in our ansatz however the main

effect that mostly determines the chemical bond is the spin contamination of

the most important occupied orbitals 2σu,3σg and 2π′
gs. In this way they
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Figure 5.3: DMC energy dispersion of the carbon dimer: only the JPf allows
the system to be size consistent at large distance, namely it is able to recover
the energy and the expectation value of the S2 operator of two isolated atoms.
At bond distance however the carbon atoms maintain a large value of S2.
The sharp change of the projected S2 value at around 3 a.u. is probably due
to an avoided crossing of two energy levels belonging to the same irreducible
representation, in agreement with DMRG[103]. Within LSDA this effect is
reproduced by a discontinuous change in the occupation of the π orbitals in
the corresponding Slater determinant. Lines are guides to the eye. From
Ref.[28].

can contribute to the bonding by means of the corresponding spin-fluctuation

energy gain, that is instead vanishing for the inner core orbitals (this is because

they have a definite spin in the same quantization axis chosen for the Jastrow).

This shows therefore that the bonding in C2 cannot be explained with charge

electrostatic, and instead the large atomic spin value confirms that the energy

is intimately due to correlation, the same that allows, by means of the JF, the

evaluation of the spin-wave zero point energy of a quantum antiferromagnet.

Moreover Fig. 5.3 shows that only with the JPf WF we have a size consistent

solution with the molecule that recovers the energy of two independent atoms

at large distance. This feature is fundamental if we want to use this WF
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to describe chemical reactions and perform large scale simulations, with a

size consistent behavior at large distances. The importance of the variational

optimization of the wave function is particularly evident in this small molecule.

With the standard approach, by applying DMC to a SD taken by DFT (here

obtained with Purdue and Zunger LDA[104]), a level crossing in the occupation

of the π molecular orbitals occurs at around 3 Bohr distance, above which the

π bonding orbitals are only partially occupied. This implies clear artifacts in

the DMC energies. We have verified that this level crossing is reproduced with

a standard DFT-LDA calculation by Gaussian16 A.03 revision [105] and an

almost converged basis set (the standard cc-pVQZ). The level crossing has also

been observed in Ref. [106]. In our variational optimization instead, we have

verified that it is important to start at large distance with the WF predicted by

LSDA, otherwise a sizeably higher energy is obtained. This effect is reflected

also by the sharp change of the projected S2 at around 3 Bohr distance (see

Fig. 5.3), that could be compatible with an avoided crossing between two

energy levels belonging to the same 1Σ+
g representation[103].

We further compared the JPf carbon energy dispersion with unrestricted

single reference coupled cluster (UCCSD-T), and DMRG, heat-bath configu-

ration interaction (HCI) and FCI from literature[103, 107, 96]. U-CCSD(T)

calculations were performed using Gaussian16 A.03 revision with the counter-

poise correction, with the frozen-core approximation and the full-core corre-

lation [105]. Table 5.4 and Fig. 5.4 show that there are significant discrepan-

cies between different methods in the carbon dimer dispersion curve at large

distances. However, even in a quadruple zeta basis the FCI binding energy

De = 6.22eV [96] is about 6mH lower than the estimated exact one. Therefore,

if we reference all the curves at the bond length minimum energy, as reported

in the mentioned figure, a method that is supposed to be weakly dependent on

the basis, as our DMC, should be slightly higher in energy at large distance,

provided it remains close to the exact dispersion energy curve. Moreover there

99



Ta
bl

e
5.

4:
C

ar
bo

n
E

ne
rg

y
D

is
pe

rs
io

n
[H

ar
tr

ee
].

T
he

JP
f
re

su
lt

s
w

er
e

ob
ta

in
ed

w
it

h
th

e
op

ti
m

iz
ed

cc
pV

D
Z

ba
si

s
se

t,
th

e
D

M
R

G
re

su
lt

s
w

it
h

th
e

cc
pV

Q
Z

ba
si

s,
th

e
H

C
I

w
it

h
cc

pV
5Z

ba
si

s
se

t,
th

e
FC

I
w

it
h

cc
pV

Q
Z

ba
si

s
se

t,
w

he
re

as
th

e
U

C
C

SD
-T

on
es

,b
ot

h
fu

ll
an

d
fr

oz
en

co
re

,a
re

sh
ow

n
fo

r
cc

pV
5Z

ba
si

s
se

ts
.

N
um

er
ic

al
Te

ch
ni

qu
e

D
is

ta
nc

e
JP

f(
D

M
C

)
D

M
R

G
H

C
I

U
C

C
SD

-T
f
r
o
z
en

U
C

C
SD

-T
f
u
ll

FC
I

2.
07

87
-7

5.
86

65
2(

3)
-7

5.
76

12
5b

-7
5.

76
70

1c
-7

5.
76

08
5

-7
5.

78
68

3
-7

5.
76

24
d

2.
26

77
-7

5.
90

20
7(

3)
-7

5.
79

92
4b

-7
5.

80
46

1c
-7

5.
78

45
0

-7
5.

80
87

8
-7

5.
79

87
d

2.
34

80
-7

5.
90

45
6(

3)
-7

5.
80

26
9b

-7
5.

80
78

6a
,c

-7
5.

78
37

0
-7

5.
80

75
4

-7
5.

80
25

d

2.
45

66
-7

5.
90

00
8(

3)
-7

5.
79

93
7b

-7
5.

80
44

4c
-7

5.
77

92
8

-7
5.

80
24

7
-7

5.
79

93
d

2.
64

56
-7

5.
87

82
5(

4)
-7

5.
77

93
7b

-7
5.

78
46

0c
-7

5.
76

46
5

-7
5.

78
66

4
-7

5.
77

98
d

3.
02

35
-7

5.
81

70
0(

8)
-7

5.
72

40
5b

-7
5.

72
89

5c
-7

5.
71

76
2

-7
5.

73
76

5
-7

5.
72

43
d

3.
77

94
-7

5.
73

64
9(

8)
-7

5.
64

56
0b

-7
5.

65
04

3a
,c

-7
5.

62
16

2
-7

5.
63

99
6

-7
5.

64
54

d

a
In

te
rp

ol
at

ed
.

b
R

ef
er

en
ce

[1
03

].
c

R
ef

er
en

ce
[1

07
].

d
R

ef
er

en
ce

[9
6]

.

100



 0

 1

 2

 3

 4

 5

 6

 7

 2  2.2  2.4  2.6  2.8  3  3.2  3.4  3.6  3.8

T
�
�
�
�  

E
�
�
�
�
�

 [
�
	



D��
���� [Bohr]

JPf (DMC)
DMRG
HCI

full UCCSD-T
frozen UCCSD-T

FCI

Figure 5.4: Energy dispersion of the carbon dimer calculated with JPf (DMC),
UCCSD-T (ccpV5Z), DMRG[103], HCI[107], and FCI[96]. Lines are guides to
the eye. From Ref.[28].

may be sizeable corrections due to the frozen core approximation employed by

DMRG, HCI, and FCI. We have indeed verified that they are non negligible in

the UCCSD-T calculation, implying that core-valence interaction can lead to a

further non-parallelity error of about 3mH (see Fig. 5.4). Core-valence interac-

tion is considered in DMC calculations simply because, within this technique,

it is not possible to employ the frozen core approximation. Nevertheless, it is

clear that our results may have some error, but it is remarkable that if we use

the corresponding energy values for computing the zero point energy (ZPE)

of the dimer we find excellent agreement with the experimental value, given

by 0.1146 eV [108]. Indeed the ZPE calculated values, using a standard fit

with a quartic polynomial close to the equilibrium distance, are 0.1153(6) eV ,

0.108 eV , 0.106 eV , 0.112 eV , 0.114 eV and 1133(3) eV for DMC, UCCSD-T

full core and frozen core, DMRG, HCI, and FCI, respectively. In summary, by

taking into account all possible sources of error, we believe that our results are

in reasonable agreement we the expected ”exact result” converged in the com-
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plete basis set limit and with full core-valence interaction taken into account.

Indeed we believe that only a more direct comparison with experiments or a

full core FCI/DMRG or HCI extrapolated to the complete basis set limit can

further improve the accuracy of the dispersion curve.

5.1.2 Nitrogen

Nitrogen is in some sense similar to the carbon case: also its dimer is indeed

a singlet formed by two large spin (3/2) atoms.

As we can notice from Fig. 5.1 and table 5.5, at DMC level the JsAGP and

JPf are both exact within chemical accuracy. All our calculations compare

with the exact result better than the JFVCAS solution. Surprisingly, at VMC

level the binding energies calculated with JPf, JsAGP, and JAGPu are also

very good.

We remark that a very powerful method, like the recently proposed Fermi

Net[109] (a neural network based WF), cannot reach the same precision in

the binding energy even if the total energies of the molecule and atom are the

best available ones. This clearly shows that all our ansatze allow a remarkable

cancellation of errors when computing the total energy differences between the

molecule and the two independent atoms.

In this case, however, the difference between JPf and JsAGP/JAGPu is

much smaller than in the previous case. This should be related to a less

important role of the spin fluctuations and also to a smaller magnetic moment

of the atoms at equilibrium distance. By repeating the reasoning done for

the carbon dimer, we can quantify the magnetic moment from the S2 value

in the semi-infinite region separated by a plane perpendicular to the axis of

the molecule and equidistant from the atoms. Looking at Fig. 5.5 we can see

that, at bond distance, the S2 of the atom is much smaller than the one of an

independent atom and therefore, even if the nitrogen atom has a large spin,

when it is forming a dimer it does not give rise to strong antiferromagnetism.
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Table 5.5: Nitrogen Energies. The JsAGP, JAGPu and JPf results are calcu-
lated with an optimized ccpVTZ basis set.

Nitrogen

Atom Molecule Binding

Source Energy[H] Energy[H] Energy[eV ]

JSD -54.5628(1)a -109.4520(5)a 8.88(1)a

JFVCAS - -109.4851(3)a 9.78(1)a

JsAGP -54.55794(6) -109.4781(7) 9.856(3)

JAGPu -54.55998(5) -109.48155(7) 9.840(3)

JPf -54.56633(5) -109.49226(7) 9.785(3)

JSD (DMC) -54.57587(4)a -109.5039(1)a 9.583(3)a

JFVCAS (DMC) - -109.5206(1)a 10.037(3)a

JsAGP (DMC) -54.5765(1) -109.5164(2) 9.88(1)

JAGPu (DMC) -54.5767(3) -109.5140(2) 9.81(1)

JPf (DMC) -54.57709(9) -109.5192(1) 9.933(6)

Fermi Net -54.58882(6)b -109.5388(1)b 9.828(5)b

Estimated Exact -54.5892c -109.5427d 9.908(3)d
a Reference [16].
b Reference [109].
c Reference [102].
d Reference [92].

Also in this case it is important to notice that the JPf solution is size

consistent both in energy and spin. Despite the very good description at

bond distance provided by the JsAGP, we notice from Fig. 5.5 that it is not

perfectly size consistent. Within our approach a fully consistent picture and

a very accurate dispersion are possible only by means of the JPf ansatz, that

is able to work properly also in the strong correlation regime, namely at large

interatomic distance.

We also compared in table 5.6 the JPf nitrogen energy dispersion with

103



Ta
bl

e
5.

6:
N

it
ro

ge
n

E
ne

rg
y

D
is

pe
rs

io
n

[H
ar

tr
ee

].
T

he
JP

fr
es

ul
ts

w
er

e
ob

ta
in

ed
w

it
h

th
e

op
ti

m
iz

ed
cc

pV
D

Z
ba

si
s

se
t,

th
e

D
M

R
G

an
d

M
R

C
C

re
su

lt
s

w
it

h
th

e
cc

pV
D

Z
ba

si
s,

w
he

re
as

th
e

co
rr

es
po

nd
in

g
U

C
C

SD
-T

on
es

ar
e

sh
ow

n
al

so
fo

r
a

m
uc

h
la

rg
er

ba
si

s
(c

cp
V

5Z
),

re
su

lt
in

g
in

m
uc

h
be

tt
er

ag
re

em
en

t
w

it
h

th
e

pr
es

en
t

D
M

C
re

su
lt

s.

N
um

er
ic

al
Te

ch
ni

qu
e

D
is

ta
nc

e
JA

G
P

(D
M

C
)

D
M

R
G

M
R

C
C

U
C

C
SD

-T
(D

Z)
U

C
C

SD
-T

(5
Z)

2.
11

8
-1

09
.5

16
94

(5
)

-1
09

.2
78

33
b

-1
09

.2
76

83
b

-1
09

.2
76

52
-1

09
.4

13
03

a

2.
4

-1
09

.4
64

59
(6

)
-1

09
.2

38
38

b
-1

09
.2

36
87

b
-1

09
.2

32
02

-1
09

.3
59

26

2.
7

-1
09

.3
79

35
(6

)
-1

09
.1

60
29

b
-1

09
.1

58
95

b
-1

09
.1

47
31

-1
09

.2
69

36

3.
0

-1
09

.2
99

61
(6

)
-1

09
.0

86
19

b
-1

09
.0

84
42

b
-1

09
.0

65
70

-1
09

.1
83

31

3.
6

-1
09

.1
97

45
(6

)
-1

08
.9

94
89

b
-1

08
.9

92
72

b
-1

08
.9

79
82

-1
09

.0
88

33

4.
2

-1
09

.1
63

76
(7

)
-

-1
08

.9
64

71
b

-1
08

.9
60

02
-1

09
.0

62
04

a
In

te
rp

ol
at

ed
.

b
R

ef
er

en
ce

[1
10

].

104



-10

-8

-6

-4

-2

 0

 2

 4

 6

 1.5  2  2.5  3  3.5  4  4.5  5  5.5

 0

 1

 2

 3

 4

 5

 6

 7

 8

B
��
�
��
�

 E
�
�
�
�
�

 [
�
�
�

P
�
	

�
�
�
�
�

 S
2

D
������ [Bohr]

��������� S2 
I��
������� Atoms 

JPf
JsAGP
JsSD

Figure 5.5: DMC energy dispersion of the nitrogen dimer: only the JPf appears
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the energy and the expectation value of the S2 operator of two isolated atoms.
At bond distance however the nitrogen atoms have a smaller value of S2, in
contrast to what is observed for the carbon dimer. Lines are guides to the eye.
From Ref.[28].

unrestricted single reference coupled cluster (UCCSD-T) with ccpVDZ and

ccpV5Z basis sets, multi-reference coupled cluster (MRCC), and DMRG[110].

U-CCSD(T) calculations were performed using Gaussian16 A.03 revision with

the counterpoise correction, with the frozen-core approximation and the full-

core correlation [105]. The DMC dispersion is in excellent agreement with

UCCSD-T calculations in ccpV5Z basis set, while DMRG and MRCC suffer

from a large basis set error compatible with the UCCSD-T one in ccpVDZ.

5.1.3 Oxygen

The oxygen is very different from the previous cases but nevertheless very

interesting for different reasons. The oxygen dimer consists of two triplet

atoms, but this time the molecule is a triplet. There are small atomic magnetic

moments in the GS of the oxygen molecule, but the role of the magnetic
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Table 5.7: Oxygen Energies. The JsAGP, JAGPu and JPf results are calcu-
lated with an optimized ccpVTZ basis set.

Oxygen

Atom Molecule Binding

Source Energy[H] Energy[H] Energy[eV ]

JSD -75.0352(1)a -150.2248(5)a 4.20(1)a

JFVCAS - -150.2436(2)a 4.713(8)a

JsAGP -75.0268(3) -150.2372(6) 5.00(3)

JAGPu -75.0339(3) -150.2503(5) 4.97(3)

JPf -75.0346(2) -150.2572(4) 5.11(2)

JSD (DMC) -75.05187(7)a -150.2872(2)a 4.992(7)a

JFVCAS (DMC) - -150.29437(9)a 5.187(5)a

JsAGP (DMC) -75.0518(3) -150.2894(3) 5.06(2)

JAGPu (DMC) -75.0519(3) -150.2902(4) 5.06(2)

JPf (DMC) -75.05289(7) -150.2942(1) 5.127(5)

Estimated Exact -75.0673b -150.3724c 5.241c
a Reference [16].
b Reference [102].
c Reference [92].

interaction remains important, as shown by the application of the JPf ansatz.

In this case it looks that the interaction of parallel spins electrons is particularly

important, and this can be described by the JPf ansatz more accurately than

the corresponding JsAGP and JAGPu ones. Thus we expect to recover with

the JPf some correlation that we miss when we simplify the ansatz by using

the unpaired orbitals in the JsAGP and in the JAGPu WFs.

By looking at Fig. 5.1 and table 5.7 we can see that, at DMC level, the

energies obtained with the JPf WF are extremely good even for the oxygen

dimer. In this case the correct description of the triplet pairing correlations,

possible within the JPf ansatz, appears to be fundamental. Indeed the final
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result is so accurate that the binding energy is comparable to the one obtained

with the multi-determinant JFVCAS WF. It is even more surprising that the

absolute energies of the atom and molecule are very close where not even better

than the ones provided by the multi-determinant expansion both at VMC and

DMC level. We have to point out, however, that within JFVCAS method

it is not possible to improve the JSD atom [16] and that the binding energy

slightly better than the JPf one derives from the poorer quality of the atom

rather than a better description of the molecule.

The problem of the size consistency for the oxygen dimer is absolutely non

trivial and even more complicated than the previous cases. Starting from bond

distance we have a molecule of spin one and fixed projection Sz = 1 but we

have to recover the behavior of two independent atoms. At large distance this

means that, by keeping the projection Sz = 1 constant, while separating the
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atoms far apart, we have to recover the correct atoms of spin one and thus we

need to have one atom with Sz = 0. This is impossible for the JsAGP and

the JAGPu but allowed by the JPf, a remarkable and absolutely non trivial

feature of this WF. As we can see from Fig. 5.6, at large distance only with the

JPf the system recovers the energy and the spins of the independent atoms,

showing that, by means of our advanced optimization tools, it is possible to

dramatically change the WF up to the point of rotating completely the spin

of an atom.

5.2 Benzene

The benzene molecule represents one of the most successful example of the

RVB theory with the carbon-carbon bonds resonating among several valence

bond configurations. QMC methods are able to provide a very good descrip-

tion of this important molecule [112, 40], and thus it is interesting to check

whether, with our new approach, we can obtain a very accurate result. In par-

ticular in table 5.8 we compare the results obtained by JsSD, JsAGP, JAGPu

and JPf WFs, showing that all the results obtained with a pairing function

(from JsAGP to JPf) provide a very good estimate of the absolute energies,

noticeably improving the results of the JsSD. Moreover the corresponding at-

omization energies are extremely accurate at the DMC level, whereas the JsSD

largely overestimates it. It is finally interesting to notice that, even if there

is a sizeable gain in terms of absolute energy with the JPf, the atomization

energy does not change, suggesting that this could be almost converged to the

exact value, therefore in slightly disagreement with Ref. [113]. This might be

in principle explained because, at present, the accuracy of the state of the art

”estimated exact” calculation is probably not enough to establish an energy

difference << 0.1eV . For instance the zero point energy (ZPE) has been esti-

mated by DFT[113] and some work is certainly necessary to clarify this issue,
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Table 5.8: Benzene Energies.
Benzene

C atoma Molecule Atomization Energy

Source Energy[H] Energy[H] Energy[eV ]

JsSD -37.8074(1) -232.0261(3) 59.37(1)

JsAGP -37.82383(4) -232.0805(3) 58.166(8)

JAGPu -37.82651(5) -232.0900(3) 57.986(8)

JPF -37.82921(4) -232.1060(2) 57.982(7)

JsSD(DMC) -37.8299(1) -232.1879(6) 60.09(2)

JsAGP(DMC) -37.8368(1) -232.1947(6) 59.16(2)

JAGPu(DMC) -37.8367(1) -232.1943(6) 59.16(2)

JPf(DMC) -37.83751(9) -232.1998(5) 59.18(2)

Estimated Exact -37.8450b -232.250(1) 59.32(2)c
a Calculated with the same basis set used for the benzene molecule.
b Reference [102].
c Reference [113].

e.g. by calculating the ZPE directly with QMC.

We remark here that the JsAGP description of the benzene molecule is

already very accurate and it is not improved by the JPf. This is probably due to

the lack of any sizeable spin moment around any atom composing this molecule.

Indeed the S2 value calculated for the JPf and JAGPu solutions is 0.032(1)

and 0.0123(7), respectively, proving that any local magnetic moment is almost

completely melted during the optimization, despite its non zero initialization.

We conclude therefore that in the benzene molecule the spin fluctuations are

not relevant and the use of the Pfaffian leads only to a marginal improvement

of the total energy while the molecule is correctly described by a perfect singlet

RVB ansatz given by the JsAGP, in agreement with the classical RVB picture

by L. Pauling[114].
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(a)

(c)

(b)

(d)

Figure 5.7: Orthogonal projections of the benzene dimers in the T (a and b)
and PD (c and d) configurations.

5.2.1 The benzene dimer

Motivated by the success in the description of the benzene molecule we studied

its dimer interaction. Of course there are many different configurations for the

benzene dimer, so we decided to focus on the parallel displaced (PD) and the

T shaped (T) configurations, that we can see in Fig. 5.7.

The dimers are bonded by non-covalent interaction and their interaction

is weak, in the order of few Kcal/mol. Unfortunately, it is not possible to
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Table 5.9: Benzene dimer.
Benzene dimer binding energies

Parallel Displaced T-shape

Source Binding Energy [Kcal/mol] Binding Energy [Kcal/mol]

JsSD (DMC) 2.2(3) 3.0(3)

JsSD (DMC) 2.0(1)a -

JsAGP (DMC) 3.3(2) 3.0(2)

JsSD (DMC+BF) 2.7(3)b -

CCSD(T) 2.65c 2.72c
a Reference [117].
b Reference [112].
c Reference [115].

estimate experimentally the binding energy due to the many different possible

configurations of the dimer and the absence of control on the geometry on this

scale. Moreover, compared to the cases of study presented so far, these sys-

tems contain a much larger number of electrons and therefore they cannot be

studied with multi-determinant methods. For this reason there is not a clear

reference for an exact value. The most accurate references for these systems

are the CCSD(T)[115] and the DMC with JsSD as a guiding function with

the backflow transformation (BF)[112]. Relying on the results on the benzene

molecule presented before, we decided to use the JsAGP for this calculation

instead of the JPf since we were not expecting significant differences among

the two ansatze. Moreover. the calculations on these systems (with correla-

tion consistent effective core potential (ccECP)[116] for the carbon atoms and

ccpVTZ basis set both for carbon and hydrogen) requires the simultaneous

optimization of more than 20000 variational parameters with the JsAGP and

more than 40000 with the JPf.

Table 5.9 shows the results from literature and our calculations, including

the JsSD results in the same basis set used for the JsAGP. We can see that
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the JsAGP coincides with the CCSD(T) results within chemical accuracy. The

slightly higher binding energies may actually be the result of a better descrip-

tion of the Van Der Waals interaction. Unfortunately without an exact refer-

ence it is impossible to understand which of the two methods is more accurate

in this case. The JsSD ansatz, instead, clearly underestimates the interaction

between two benzene dimers in the PD configuration, yielding slightly wrong

nodal surfaces for the DMC calculations and wrong binding energies. This is

surprising considering that for non-covalent interaction the DMC with JsSD

is supposed to provide a good accuracy in estimating the binding energies due

to error cancellation within fixed node approximation[118]. However, it was

already known in literature[117] that JsSD underestimates the binding energy

for the PD configuration. It is evident that in this case the use of an optimized

pairing function ansatz, or a more complicated one, is necessary to obtain a

correct guiding function and consequently a good evaluation of the binding

energies even for this non-covalent interaction.
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Conclusions

In this thesis we have seen and analyzed different possibilities for QMC calcu-

lations, with a particular focus on Jastrow correlated pairing function ansatze.

Going through the chapters, we have seen that VMC and DMC, even with

the use of the standard Jastrow Slater ansatz (JsSD), can give insight on non

trivial systems like the hydrogen chain, unveiling the metal-insulator phase

transition and the dimerization in an excellent qualitative and quantitative

agreement with the other state of the art techniques.

We have seen, however, that the use of a JsSD can hide some pitfalls

and even in simple systems like the (H2)2 it is possible to observe catastrophic

failures. This system has been particularly instructive, allowing us to show that

the full optimization of the JsAGP ansatz guarantees a very fast convergence in

the basis set, so that no kind of extrapolation is necessary for almost converged

results in the complete basis set limit. This property has also been verified for

the atomic dimers where other methods like DMRG, HCI, FCI, and UCCSD-T

have shown a critical dependency on the basis set, requiring the use of a much

larger basis compared to the ones we have adopted.

Moreover, with the use of the (H2)2 model system we were also able to

prove that the AGP alone, without the use of a JF, miserably fails, leading

not only to inaccurate DMC energies but qualitatively wrong results, as a

discontinuity of the energy landscape as a function of the atomic positions

was reported. In this case the wrong nodal surface determined by the AGP,

was not detectable at the VMC level, because the optimized VMC energy was
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indeed a smooth and continuous function of the ion positions, as it should be

from general grounds.

The use of a powerful spin and charge dependent JF, together with the ad-

vanced optimization techniques, is probably the key to explain the remarkable

improvement obtained with the JPf ansatz, compared to previous attempts[26,

27]. With a computational cost comparable to a SD we were able to improve

not only the results achieved with a simple JsSD but also with JsAGP and

JAGPu, reaching a level of accuracy comparable to the multi-determinant

JFVCAS WF one. In particular we have seen that the JPf ansatz provides

a very accurate description of high spin atoms and their dimers and that it

is size consistent. This should increase the number of possible applications,

providing a reasonably accurate and computationally feasible tool for studying

chemical reactions. By considering the triplet correlations, we can now cor-

rectly take into account the zero point energy associated with the well-known

spin fluctuations of a quantum magnetic system. Within our Pf WF they are

correctly and efficiently taken into account by orienting the atomic magnetic

moments in the direction perpendicular to the spin quantization axis chosen

for the JF. For this reason we have obtained a very good description of the

carbon and nitrogen dimers, remarkably, even when the first molecule was

found to be very poorly described by the JsAGP and the JAGPu. Moreover,

it is only thanks to the presence of the triplet correlations that we were able

to improve the description of the oxygen dimer, a strongly correlated triplet

molecule with a highly entangled spin interaction among the atoms. We also

demonstrated that for the benzene dimer the JPf, JsAGP, and JAGPu can

provide very accurate atomization energies, in contrast to the commonly used

JsSD (overbinding by more than 0.2 eV ). In this case the triplet correlations

do not seem to play a crucial role.

The case of the benzene dimer has been also particularly instructive. Through

the use of an optimized pairing function it was possible to improve the descrip-
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tion of the DMC binding energy for the PD configuration. With the JsSD,

even at DMC level, there is a relevant difference between the binding energies

of the two considered configurations that is not observed within CCSD(T) or

JsAGP calculations. This shines a sinister light on the widespread assump-

tion that the JsSD is able to provide correct nodal surfaces for non-covalent

interaction since it is evident that optimization matters even in this case.

It is important to highlight that for all the systems in exam the accuracy in

the binding energy is always much better than the accuracy in the total energy

and that therefore there exists always a remarkable cancellation of errors in

the total energy differences. This feature indeed is fundamental for compact

ansatze like the JPf and the JsAGP, that, as we have shown, provide accuracy

in binding energies better than other very expensive highly correlated methods,

like the Fermi Net in the nitrogen dimer, even when these are able to achieve

almost exact total energies.

The relatively low computational cost of QMC combined with powerful

optimization techniques, allowing a reasonably large number of variational pa-

rameters, makes this approach ideal for studying systems even much larger

than the ones considered in this work. Indeed, the paradigm presented in this

thesis could represent in the future a very powerful tool to investigate the elec-

tronic structure of interesting chemical compounds and physical systems where

the spin interaction plays an important role. The spin interaction may, indeed,

be much more important than previously believed, as we have shown here for

the C2 molecule, the very first and remarkable example of an antiferromagnetic

chemical bond.
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